Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is that plant a tortoise or a hare? Answer predicts its response to environmental change

22.04.2004


As the spring foliage grows, each plant, like an entrepreneur, builds its leaves according to an economic strategy. Some plants live like the proverbial hare, following a "live fast, die young" strategy; their leaves produce and consume energy quickly but soon "burn out" or fall victim to bad weather or hungry herbivores. Other leaves are more tortoiselike, taking a "live slowly and last long" approach. A new study has revealed the global continuum of leaf economics, documenting where 2,548 species growing at 175 sites fit along the "tortoise-hare" continuum. For the first time, scientists can equate plants in Amazonian rain forest, Minnesota prairie or Alaskan spruce woods using the same set of economic strategies. Moreover, a plant’s position on the continuum predicts how it will likely respond to climate change and other factors. The work will be published in the April 22 issue of the journal Nature.



"This is the most comprehensive study of the physiology of natural vegetation ever done," said author Peter Reich, professor of forest resources at the University of Minnesota. "Leaves are little factories. As a factory, each can make money (energy) in a big hurry, but at the risk of running down its equipment fast. Or, a factory can have a slow and steady output. It’s fundamental tradeoff for every leaf, and the strategy it follows determines how it reacts to change." Besides Reich, authors of the paper were Ian Wright (first author) and Mark Westoby of Macquarie University, Australia, Jeannine Cavender-Bares and Jacek Oleksyn from the University of Minnesota, and a long list of researchers from every inhabited continent.

It all began in 1985, when Reich was a postdoctoral fellow at Cornell University. He compared the rates different plants captured and stored energy through photosynthesis and the rates they used energy--a process called respiration. He noticed that two fast-growing "hare" plants--poplar trees and soybeans--were more susceptible to ozone pollution than slower-growing "tortoise" pine trees.


"It’s because poplar trees exchanges gases faster than pine," said Reich. "Therefore, poplar takes in more ozone than pine. Soybeans, wheat and other crops are bred to grow fast, and they tend to be like poplars. This was an important predictor of how these trees and crops would respond to pollution. I wondered how they had come to have these traits in the first place and what the implications were for responses to changes in environment more broadly. So I began to physiologically compare plants whose leaves might have these contrasting economic strategies. I’ve carried portable photosynthesis sensors to more than 20 sites on four continents."

Twenty years later, Reich and his colleagues can say that plants like hares and tortoises are found in every ecosystem, and so plants from boreal forest, rainforest, desert and everywhere else can be compared. For example, "hares" like aspen and birch are better able to use resources when conditions get better. Therefore, if rainfall or nutrient levels increased, these trees would do well. But if conditions were to get drier or less fertile, the slower-growing "tortoises"--such as spruce, hemlock and other evergreens--would be favored, he said. Similarly, if there is little sunlight available in the understory of a forest, the "tortoises" can scale back their operations and live with it. In general, "hares" are good at "ramping up" when conditions improve, but tortoises are better at controlling their energy consumption when times get tough. Thus, the theory works well as a predictor of responses to increasing nitrogen pollution, added Reich.

The researchers also noted that leaves are built in accordance with their economic strategy. Leaves of fast-growing plants tend to be thin and flimsy and full of expensive nutrients like nitrogen and phosphorus. The thinner a leaf, the better the chance that a ray of sunlight will penetrate to the leaf’s photosynthetic machinery--but the greater its chance of being blown or chomped off. And the expensive invesstments in nutrients only pay off when there is a lot of sunlight and conditions are generally good. In contrast, slow growth allows for thick, sturdy leaves that resist weather and herbivores and can pay off under challenging conditions.

Weeds usually fall into the hare category, said Reich. Their strategy is to grow fast and quickly release seeds, and they tend to grow in places where the vegetation is disturbed.

Data for the study were collected from the University of Minnesota’s Cedar Creek Natural History Area, forests in Wisconsin and Minnesota, the New Mexican desert, the Appalachian Mountains, the Amazon Basin, the Australian Outback and numerous other places. The work was supported in part by the National Science Foundation and the U.S. Department of Energy.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>