Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is that plant a tortoise or a hare? Answer predicts its response to environmental change

22.04.2004


As the spring foliage grows, each plant, like an entrepreneur, builds its leaves according to an economic strategy. Some plants live like the proverbial hare, following a "live fast, die young" strategy; their leaves produce and consume energy quickly but soon "burn out" or fall victim to bad weather or hungry herbivores. Other leaves are more tortoiselike, taking a "live slowly and last long" approach. A new study has revealed the global continuum of leaf economics, documenting where 2,548 species growing at 175 sites fit along the "tortoise-hare" continuum. For the first time, scientists can equate plants in Amazonian rain forest, Minnesota prairie or Alaskan spruce woods using the same set of economic strategies. Moreover, a plant’s position on the continuum predicts how it will likely respond to climate change and other factors. The work will be published in the April 22 issue of the journal Nature.



"This is the most comprehensive study of the physiology of natural vegetation ever done," said author Peter Reich, professor of forest resources at the University of Minnesota. "Leaves are little factories. As a factory, each can make money (energy) in a big hurry, but at the risk of running down its equipment fast. Or, a factory can have a slow and steady output. It’s fundamental tradeoff for every leaf, and the strategy it follows determines how it reacts to change." Besides Reich, authors of the paper were Ian Wright (first author) and Mark Westoby of Macquarie University, Australia, Jeannine Cavender-Bares and Jacek Oleksyn from the University of Minnesota, and a long list of researchers from every inhabited continent.

It all began in 1985, when Reich was a postdoctoral fellow at Cornell University. He compared the rates different plants captured and stored energy through photosynthesis and the rates they used energy--a process called respiration. He noticed that two fast-growing "hare" plants--poplar trees and soybeans--were more susceptible to ozone pollution than slower-growing "tortoise" pine trees.


"It’s because poplar trees exchanges gases faster than pine," said Reich. "Therefore, poplar takes in more ozone than pine. Soybeans, wheat and other crops are bred to grow fast, and they tend to be like poplars. This was an important predictor of how these trees and crops would respond to pollution. I wondered how they had come to have these traits in the first place and what the implications were for responses to changes in environment more broadly. So I began to physiologically compare plants whose leaves might have these contrasting economic strategies. I’ve carried portable photosynthesis sensors to more than 20 sites on four continents."

Twenty years later, Reich and his colleagues can say that plants like hares and tortoises are found in every ecosystem, and so plants from boreal forest, rainforest, desert and everywhere else can be compared. For example, "hares" like aspen and birch are better able to use resources when conditions get better. Therefore, if rainfall or nutrient levels increased, these trees would do well. But if conditions were to get drier or less fertile, the slower-growing "tortoises"--such as spruce, hemlock and other evergreens--would be favored, he said. Similarly, if there is little sunlight available in the understory of a forest, the "tortoises" can scale back their operations and live with it. In general, "hares" are good at "ramping up" when conditions improve, but tortoises are better at controlling their energy consumption when times get tough. Thus, the theory works well as a predictor of responses to increasing nitrogen pollution, added Reich.

The researchers also noted that leaves are built in accordance with their economic strategy. Leaves of fast-growing plants tend to be thin and flimsy and full of expensive nutrients like nitrogen and phosphorus. The thinner a leaf, the better the chance that a ray of sunlight will penetrate to the leaf’s photosynthetic machinery--but the greater its chance of being blown or chomped off. And the expensive invesstments in nutrients only pay off when there is a lot of sunlight and conditions are generally good. In contrast, slow growth allows for thick, sturdy leaves that resist weather and herbivores and can pay off under challenging conditions.

Weeds usually fall into the hare category, said Reich. Their strategy is to grow fast and quickly release seeds, and they tend to grow in places where the vegetation is disturbed.

Data for the study were collected from the University of Minnesota’s Cedar Creek Natural History Area, forests in Wisconsin and Minnesota, the New Mexican desert, the Appalachian Mountains, the Amazon Basin, the Australian Outback and numerous other places. The work was supported in part by the National Science Foundation and the U.S. Department of Energy.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>