Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More storms and surges with warmer conditions

21.04.2004


Sea-level rise and changes to cyclone intensity under enhanced greenhouse conditions would pose a considerable increase in risk to coastal property and infrastructure, according to a recent CSIRO study.




Dr John Church, of CSIRO and the Antarctic Climate and Ecosystems CRC, said a recent study had confirmed that sea-level in the Australian region was rising at rates which would have a significant impact over decades to come.

Speaking at the Coast to Coast 04 conference in Hobart today, Dr Church said a recent analysis for Cairns showed the North Queensland city would be subject to impacts such as storm surges and severe wave conditions.


"The perception is that the main impact is going to be flooding through a combination of longer-term sea-level rise and king tides," Dr Church said.

"Our analysis is that infrastructure and resource managers in coastal communities need to also factor in a third component likely under global warming - extreme storms.

"Put extreme storms, king tides and long-term sea-level rise together and you have a package that the insurance industry recognises will produce high-cost storms and floods in Australia and New Zealand."

Dr Church was a lead author on sea-level rise for the Third Assessment Report of the Intergovernmental Panel on Climate Change released in 2000.

He said the report concluded that it was very likely that the 20th century warming has contributed significantly to the observed sea-level rise through thermal expansion of sea water and widespread loss of land ice.

"Sea-level rise has the potential to affect millions of people living in low lying coastal regions, particularly the inhabitants of mega cities developing on coasts around the world and those living on deltas of major rivers and small island nations," he said.

"For the 21st century, thermal expansion of the oceans is likely to make the largest contribution to sea-level rise."

The research was conducted by Dr Church, Dr John Hunter, Dr Kathleen McInnes and Dr Neil White, scientists at CSIRO and the Hobart-based Antarctic Climate and Ecosystems Cooperative Research Centre.

In their study of impacts on Australian coastal communities from climate change, Dr Church and his colleagues analysed Australian sea-level records for the period 1920 to 2000.

They drew their basic data from records obtained from tide gauges at Fremantle, Sydney and other locations. These indicated a minimum in the rate of sea-level rise from the mid-1970’s to the mid-1990’s. An assessment for the period 1950 to 2000 showed that sea-level rise around Australia was less than the global average, a result of the trend to more frequent, persistent and intense events since the mid-1970’s. This lower rate of sea-level rise around Australia is not likely to continue indefinitely.

Averaged around Australia, relative sea-level rise for the period 1920 to 2000 was about 1.2 mm/year compared to 1.8 mm/year for the period 1950 to 2000 averaged around the world.

More information:

Dr John Church, 03 6232 5207

Media assistance:

Craig Macaulay, Marine Research, 03 6232 5219 or 0419 966 465
Coast to Coast 04 conference media contact:
Jess Tyler, 0408 298 292

Geraldine Capp | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=prsealevels

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>