Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the sake of land and climate, coaxing soil to soak up carbon

02.04.2004


Promising results of soil treatments to sequester carbon lead to field tests



In a novel approach to stalling global warming while reinvigorating nutrient-depleted farmland, chemists have found they can promote soil’s natural ability to soak up greenhouse-gas carbon dioxide from the surrounding air.

Experiments led by Jim Amonette at the Department of Energy’s Pacific Northwest National Laboratory in Richland, Wash., and reported today at the American Chemical Society national meeting, show that maintaining a proper alkalinity plus frequent wetting and drying cycles can coax soil to retain more carbon.


"Globally, soils contain four times as much carbon as the atmosphere, and half of the soil carbon is in the form of organic matter," said Amonette, a PNNL senior research scientist. Until about 30 years ago, soil tillage released more carbon dioxide to the atmosphere than burning of fossil fuels. Some agricultural soils have lost a third of their carbon from tillage.

"These carbon-depleted soils are a tremendous potential reservoir for carbon that can help slow the increase in atmospheric carbon dioxide," Amonette said. "The amount of carbon added to soil in a year is incredible. Today, 99 percent of it comes out the top as carbon dioxide. If we can increase the fraction that is retained in soil by even a small amount, it will make a huge difference."

Amonette’s experiments promoted the activity of tyrosinase, a common enzyme that catalyzes soil’s natural "humification" process. This process involves the gradual incorporation of carbon from dead plants and microbes into stable organic matter called humus, which is responsible for the dark color in many soils. Tyrosinase increases the reaction rate between oxygen and humus precursors, such as phenols and hydroxybenzoic acids, to form quinones. The quinones react with amino acids released by soil microbes to form complex, durable molecules called humic polymers.

"Because humic polymers are less easily degraded by microbes than the precursor molecules, they survive to diffuse into small pores in soil aggregates where they are stabilized for decades, if not centuries," Amonette said.

The humification rate depends on many factors: enzyme stability, moisture, alkalinity, oxygen availability, microbial population and the physical properties of different soils. Amonette’s experiments were designed to weigh the importance of these many factors and to learn ways they might be manipulated to increase humification.

In the lab, Amonette assembled 72 elaborate plastic-tube configurations he likens to "those Russian nesting dolls," matrioshkas. The tubes allowed Amonette to control individual moisture levels and oxygen availability. Each soil sample was placed between the inner and outer walls of water-tight but gas-porous concentric cylinders. These were placed inside yet a larger "chimney" tube to control the humidity as well as the type of gas and its flow rate.

Amonette was particularly interested in identifying soil components and soil additives that might improve tyrosinase’s natural ability to promote humification. He found that an alkaline, porous material called "fly ash," a byproduct of coal combustion, "speeds up the normal humification process by promoting the reaction of the quinones with the amino acids and providing small pores to protect humic polymers," he said. "Frequent cycles of wetting and drying appear to be important, too, for fostering a rich microbial community that supplies many of the humic precursors and for aiding the formation of soil aggregates."

Amonette is eager to put his results to the test where it matters most--in the field. He will get his wish in May, when he travels to a field outside of Charleston, S.C. There, he and collaborators from the U.S. Forest Service and Oak Ridge National Laboratory will plant 72 pots containing various controlled mixtures of soil and catalysts.


###
PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 3,800, has a $600 million annual budget, and has been managed by Ohio-based Battelle since the lab’s inception in 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-25.htm

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>