Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University researchers create nanoparticles to clean up contaminated sites

01.04.2004


Researchers at Carnegie Mellon University and the U.S. Department of Energy are developing "smart" nanoparticles to clean up environmental toxins that resist conventional remediation methods. This research is being presented by Greg Lowry on Wednesday, March 31, at the 227th annual meeting of the American Chemical Society in Anaheim, Cal. (ENVR 52, Marriott-Grand Ballroom D).



Pollutants in the ground that do not easily mix with water, such as organic solvents, are a continued source of groundwater pollution until they are removed.

"These subsurface pollutants are a particularly difficult problem because there are few reliable technologies to locate and destroy them," said Lowry, a professor of civil and environmental engineering at Carnegie Mellon. "Our team of environmental engineers, chemical engineers, chemists and physicists is developing a process very similar to a targeted drug delivery system to target and destroy these dangerous groundwater toxins," he said.


A team of investigators, including Lowry, Sara Majetich, Krysztof Matyjaszewski, David Sholl and Robert Tilton of Carnegie Mellon and Paul Meakin, George Redden and Harry Rollins of the Energy Department, designed nanoparticles with the potential to reach underground pockets of chlorinated organic solvent called trichloroethylene (TCE). This chemical is still used extensively to remove grease from metal parts. Approximately 60 percent of the 1,400 contaminated sites on the National Priorities List, the nation’s most hazardous waste sites, are contaminated with this suspected carcinogen, according to Lowry.

TCE separates out from water as droplets, much like oil or water. But underground pockets of this chemical can steadily release droplets into porous soil layers called aquifers, which supply 50 percent of the nation’s drinking water. Left untreated, billions of gallons of groundwater stand to be contaminated by TCE, Lowry said.

To make the nanoparticles used in the current research, the investigators started with a core reactive iron that quickly breaks down chlorinated organic solvents into harmless byproducts. The research group of Matyjaszewski, a professor of chemistry and director of the Center for Macromolecular Engineering at the Mellon College of Science, coated these iron molecules with two polymer shells. An outer, "water-loving" shell would enable particles to travel through an aquifer. Once it reached a water-TCE interface, an inner "water-hating" shell would make the particles stick there and allow the particle’s reactive core to break down this toxic residue.

The nanoparticles were created by atom transfer radical polymerization (ATRP). This synthetic method was developed by Matyjaszewski to precisely control the formation of polymers at the nanoscale level. Using ATRP, scientists can mass produce high quality materials that combine very different structural and functional properties.

Nanoparticles are ideal agents to treat underground pockets of chlorinated organic solvents because they can move easily through even the smallest pores within soil. The current study is focused on developing particles with field testing as the next segment. This nanoparticle technology also could be adapted to clean up spills of other chlorinated solvents.

It has been estimated that the cost of cleaning up the many U.S. groundwater sites contaminated by TCE could reach $1 trillion, according to the Department of Energy. Current technologies are limited in their effectiveness. Typically, they involve containing the problem by treating a steady plume of organic solvent as it is slowly released from the source. Taking the targeted nanoparticles directly to the source of the contamination would remove it and solve the problem faster, Lowry said. This step would significantly lower cleanup costs. This research also will provide a better understanding of how small particles transport in a subsurface. Researchers from Carnegie Mellon and the Idaho National Engineering and Environmental Laboratory received $1.7 million from the Department of Energy for the three-year study.


An illustration of these nanoparticles is available by contacting either Chriss Swaney at 412-268- 5776 or Lauren Ward at 412-268-7761.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>