Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University researchers create nanoparticles to clean up contaminated sites

01.04.2004


Researchers at Carnegie Mellon University and the U.S. Department of Energy are developing "smart" nanoparticles to clean up environmental toxins that resist conventional remediation methods. This research is being presented by Greg Lowry on Wednesday, March 31, at the 227th annual meeting of the American Chemical Society in Anaheim, Cal. (ENVR 52, Marriott-Grand Ballroom D).



Pollutants in the ground that do not easily mix with water, such as organic solvents, are a continued source of groundwater pollution until they are removed.

"These subsurface pollutants are a particularly difficult problem because there are few reliable technologies to locate and destroy them," said Lowry, a professor of civil and environmental engineering at Carnegie Mellon. "Our team of environmental engineers, chemical engineers, chemists and physicists is developing a process very similar to a targeted drug delivery system to target and destroy these dangerous groundwater toxins," he said.


A team of investigators, including Lowry, Sara Majetich, Krysztof Matyjaszewski, David Sholl and Robert Tilton of Carnegie Mellon and Paul Meakin, George Redden and Harry Rollins of the Energy Department, designed nanoparticles with the potential to reach underground pockets of chlorinated organic solvent called trichloroethylene (TCE). This chemical is still used extensively to remove grease from metal parts. Approximately 60 percent of the 1,400 contaminated sites on the National Priorities List, the nation’s most hazardous waste sites, are contaminated with this suspected carcinogen, according to Lowry.

TCE separates out from water as droplets, much like oil or water. But underground pockets of this chemical can steadily release droplets into porous soil layers called aquifers, which supply 50 percent of the nation’s drinking water. Left untreated, billions of gallons of groundwater stand to be contaminated by TCE, Lowry said.

To make the nanoparticles used in the current research, the investigators started with a core reactive iron that quickly breaks down chlorinated organic solvents into harmless byproducts. The research group of Matyjaszewski, a professor of chemistry and director of the Center for Macromolecular Engineering at the Mellon College of Science, coated these iron molecules with two polymer shells. An outer, "water-loving" shell would enable particles to travel through an aquifer. Once it reached a water-TCE interface, an inner "water-hating" shell would make the particles stick there and allow the particle’s reactive core to break down this toxic residue.

The nanoparticles were created by atom transfer radical polymerization (ATRP). This synthetic method was developed by Matyjaszewski to precisely control the formation of polymers at the nanoscale level. Using ATRP, scientists can mass produce high quality materials that combine very different structural and functional properties.

Nanoparticles are ideal agents to treat underground pockets of chlorinated organic solvents because they can move easily through even the smallest pores within soil. The current study is focused on developing particles with field testing as the next segment. This nanoparticle technology also could be adapted to clean up spills of other chlorinated solvents.

It has been estimated that the cost of cleaning up the many U.S. groundwater sites contaminated by TCE could reach $1 trillion, according to the Department of Energy. Current technologies are limited in their effectiveness. Typically, they involve containing the problem by treating a steady plume of organic solvent as it is slowly released from the source. Taking the targeted nanoparticles directly to the source of the contamination would remove it and solve the problem faster, Lowry said. This step would significantly lower cleanup costs. This research also will provide a better understanding of how small particles transport in a subsurface. Researchers from Carnegie Mellon and the Idaho National Engineering and Environmental Laboratory received $1.7 million from the Department of Energy for the three-year study.


An illustration of these nanoparticles is available by contacting either Chriss Swaney at 412-268- 5776 or Lauren Ward at 412-268-7761.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>