Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University researchers create nanoparticles to clean up contaminated sites

01.04.2004


Researchers at Carnegie Mellon University and the U.S. Department of Energy are developing "smart" nanoparticles to clean up environmental toxins that resist conventional remediation methods. This research is being presented by Greg Lowry on Wednesday, March 31, at the 227th annual meeting of the American Chemical Society in Anaheim, Cal. (ENVR 52, Marriott-Grand Ballroom D).



Pollutants in the ground that do not easily mix with water, such as organic solvents, are a continued source of groundwater pollution until they are removed.

"These subsurface pollutants are a particularly difficult problem because there are few reliable technologies to locate and destroy them," said Lowry, a professor of civil and environmental engineering at Carnegie Mellon. "Our team of environmental engineers, chemical engineers, chemists and physicists is developing a process very similar to a targeted drug delivery system to target and destroy these dangerous groundwater toxins," he said.


A team of investigators, including Lowry, Sara Majetich, Krysztof Matyjaszewski, David Sholl and Robert Tilton of Carnegie Mellon and Paul Meakin, George Redden and Harry Rollins of the Energy Department, designed nanoparticles with the potential to reach underground pockets of chlorinated organic solvent called trichloroethylene (TCE). This chemical is still used extensively to remove grease from metal parts. Approximately 60 percent of the 1,400 contaminated sites on the National Priorities List, the nation’s most hazardous waste sites, are contaminated with this suspected carcinogen, according to Lowry.

TCE separates out from water as droplets, much like oil or water. But underground pockets of this chemical can steadily release droplets into porous soil layers called aquifers, which supply 50 percent of the nation’s drinking water. Left untreated, billions of gallons of groundwater stand to be contaminated by TCE, Lowry said.

To make the nanoparticles used in the current research, the investigators started with a core reactive iron that quickly breaks down chlorinated organic solvents into harmless byproducts. The research group of Matyjaszewski, a professor of chemistry and director of the Center for Macromolecular Engineering at the Mellon College of Science, coated these iron molecules with two polymer shells. An outer, "water-loving" shell would enable particles to travel through an aquifer. Once it reached a water-TCE interface, an inner "water-hating" shell would make the particles stick there and allow the particle’s reactive core to break down this toxic residue.

The nanoparticles were created by atom transfer radical polymerization (ATRP). This synthetic method was developed by Matyjaszewski to precisely control the formation of polymers at the nanoscale level. Using ATRP, scientists can mass produce high quality materials that combine very different structural and functional properties.

Nanoparticles are ideal agents to treat underground pockets of chlorinated organic solvents because they can move easily through even the smallest pores within soil. The current study is focused on developing particles with field testing as the next segment. This nanoparticle technology also could be adapted to clean up spills of other chlorinated solvents.

It has been estimated that the cost of cleaning up the many U.S. groundwater sites contaminated by TCE could reach $1 trillion, according to the Department of Energy. Current technologies are limited in their effectiveness. Typically, they involve containing the problem by treating a steady plume of organic solvent as it is slowly released from the source. Taking the targeted nanoparticles directly to the source of the contamination would remove it and solve the problem faster, Lowry said. This step would significantly lower cleanup costs. This research also will provide a better understanding of how small particles transport in a subsurface. Researchers from Carnegie Mellon and the Idaho National Engineering and Environmental Laboratory received $1.7 million from the Department of Energy for the three-year study.


An illustration of these nanoparticles is available by contacting either Chriss Swaney at 412-268- 5776 or Lauren Ward at 412-268-7761.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>