Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon University researchers create nanoparticles to clean up contaminated sites

01.04.2004


Researchers at Carnegie Mellon University and the U.S. Department of Energy are developing "smart" nanoparticles to clean up environmental toxins that resist conventional remediation methods. This research is being presented by Greg Lowry on Wednesday, March 31, at the 227th annual meeting of the American Chemical Society in Anaheim, Cal. (ENVR 52, Marriott-Grand Ballroom D).



Pollutants in the ground that do not easily mix with water, such as organic solvents, are a continued source of groundwater pollution until they are removed.

"These subsurface pollutants are a particularly difficult problem because there are few reliable technologies to locate and destroy them," said Lowry, a professor of civil and environmental engineering at Carnegie Mellon. "Our team of environmental engineers, chemical engineers, chemists and physicists is developing a process very similar to a targeted drug delivery system to target and destroy these dangerous groundwater toxins," he said.


A team of investigators, including Lowry, Sara Majetich, Krysztof Matyjaszewski, David Sholl and Robert Tilton of Carnegie Mellon and Paul Meakin, George Redden and Harry Rollins of the Energy Department, designed nanoparticles with the potential to reach underground pockets of chlorinated organic solvent called trichloroethylene (TCE). This chemical is still used extensively to remove grease from metal parts. Approximately 60 percent of the 1,400 contaminated sites on the National Priorities List, the nation’s most hazardous waste sites, are contaminated with this suspected carcinogen, according to Lowry.

TCE separates out from water as droplets, much like oil or water. But underground pockets of this chemical can steadily release droplets into porous soil layers called aquifers, which supply 50 percent of the nation’s drinking water. Left untreated, billions of gallons of groundwater stand to be contaminated by TCE, Lowry said.

To make the nanoparticles used in the current research, the investigators started with a core reactive iron that quickly breaks down chlorinated organic solvents into harmless byproducts. The research group of Matyjaszewski, a professor of chemistry and director of the Center for Macromolecular Engineering at the Mellon College of Science, coated these iron molecules with two polymer shells. An outer, "water-loving" shell would enable particles to travel through an aquifer. Once it reached a water-TCE interface, an inner "water-hating" shell would make the particles stick there and allow the particle’s reactive core to break down this toxic residue.

The nanoparticles were created by atom transfer radical polymerization (ATRP). This synthetic method was developed by Matyjaszewski to precisely control the formation of polymers at the nanoscale level. Using ATRP, scientists can mass produce high quality materials that combine very different structural and functional properties.

Nanoparticles are ideal agents to treat underground pockets of chlorinated organic solvents because they can move easily through even the smallest pores within soil. The current study is focused on developing particles with field testing as the next segment. This nanoparticle technology also could be adapted to clean up spills of other chlorinated solvents.

It has been estimated that the cost of cleaning up the many U.S. groundwater sites contaminated by TCE could reach $1 trillion, according to the Department of Energy. Current technologies are limited in their effectiveness. Typically, they involve containing the problem by treating a steady plume of organic solvent as it is slowly released from the source. Taking the targeted nanoparticles directly to the source of the contamination would remove it and solve the problem faster, Lowry said. This step would significantly lower cleanup costs. This research also will provide a better understanding of how small particles transport in a subsurface. Researchers from Carnegie Mellon and the Idaho National Engineering and Environmental Laboratory received $1.7 million from the Department of Energy for the three-year study.


An illustration of these nanoparticles is available by contacting either Chriss Swaney at 412-268- 5776 or Lauren Ward at 412-268-7761.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>