Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caustic soils at Hanford may lock up contaminants fast

30.03.2004


Soil particles lock up contaminants hundreds to thousands of times faster under the caustic conditions found beneath leaking toxic waste tanks at the Hanford Nuclear Reservation than under normal soil conditions, researchers report.



Understanding more about how contaminants such as radioactive cesium and strontium move through the soil under real-world conditions will help cleanup efforts at Hanford and other sites contaminated with nuclear waste. Previous research on the movement of soil contaminants had not replicated the extreme conditions found at the Hanford Site in Washington state.

"There’s a lot of interest in trying to determine the best approach to dealing with the massive subsurface waste at Hanford," said research team leader Jon Chorover, an associate professor of environmental chemistry at the University of Arizona in Tucson. "Our work helps predict the migration of this stuff. Understanding how these contaminants move in the soil can help with remediation."


Sunkyung Choi, a research associate at UA, will present the team’s finding at the 227th national meeting of the American Chemical Society.

Choi’s presentation, "Cesium and strontium uptake to clay minerals and their weathering products in a caustic waste," will be given at 4:15 p.m Pacific time on Monday, March 29, in Grand Ballroom D of the Anaheim Marriott, 700 West Convention Way, Anaheim, Calif.

Other members of the team include UA research specialist Mary Kay Amistadi and UA professor of materials science and engineering Supapan Seraphin. The research is funded by the U.S. Department of Energy.

At the Hanford Site, high-level nuclear waste from the manufacture of weapons is stored in 177 tanks buried in the soil. The waste contains toxic and highly radioactive elements, including plutonium, cesium 137 and strontium 90, mixed in with other materials that make the liquids in the tanks extremely caustic.

Weapons production began at the Hanford Site in 1944. Since then, 67 of the tanks have leaked, releasing highly radioactive liquid waste into the soil. Some of the contaminants have been found in the groundwater. Cost estimates for cleaning up the site run into the tens of billions of dollars.

Figuring out exactly how the wastes move through the soil is difficult because the tanks’ contents are complex mixtures of chemicals. But the contaminated soils and toxic wastes materials are too dangerous for the scientists to work with directly.

"If we were working with the concentrations of radioactivity that are out there, it would be lethal doses," Chorover said. "It would kill everyone in the lab."

He and his team are doing the next best thing. They have created non-radioactive chemical mixtures that match those in the Hanford tanks and are studying how those chemicals move through uncontaminated Hanford soil collected near the tanks.

In addition, to better understand how the different components of soil interact with the various chemicals, the team created some model soils to test with the Hanford-like chemical mixtures.

Even so, geochemical processes in soils occur over years, so the research, too, must be conducted over years, not days or weeks.

So to test how various liquid-and-soil mixtures interact over time, the researchers put the mixtures in small chemical-resistant plastic bottles and loaded the bottles onto mixers that look like mini-Ferris wheels.

The wheels, each of which holds more than 100 bottles, turn the bottles end-over-end. The wheels keep turning day, after day, after day. One of the experiments has been going on more than 2 years.

At set times, the researchers test the liquid and solid portions of bottles’ contents to see how chemicals from the liquid have reacted with the soil particles.

To the researchers’ surprise, over time the contaminants in the experimental set-ups were bound by newly formed clays in the soil, forming unusual minerals called zeolites and feldspathoids. The mineral particles, about a thousand times smaller than a grain of sand, don’t dissolve easily and therefore keep the contaminants trapped in the soil.

"We find the contaminants are remarkably slow to redissolve and appear to be more stable than initially thought," said Chorover. That stability may keep the contaminants from leaching deeper into the soil and the groundwater.

The team also found that the various clays from the soil and the various contaminants react differently with one another.

Although learning that contaminants get sequestered in solid particles seems like good news, Chorover is cautious.

"We really don’t know the lifetimes of these particles. We’ve shown it in the lab, but we don’t know what’s happening in the field," he said. "We do know contaminants are migrating through the soil in the field, so these laboratory results don’t explain all of what we see at Hanford."

The team’s next step is figuring out how stable the solids are and how long they last in the environment.

Jon Chorover | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>