Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caustic soils at Hanford may lock up contaminants fast

30.03.2004


Soil particles lock up contaminants hundreds to thousands of times faster under the caustic conditions found beneath leaking toxic waste tanks at the Hanford Nuclear Reservation than under normal soil conditions, researchers report.



Understanding more about how contaminants such as radioactive cesium and strontium move through the soil under real-world conditions will help cleanup efforts at Hanford and other sites contaminated with nuclear waste. Previous research on the movement of soil contaminants had not replicated the extreme conditions found at the Hanford Site in Washington state.

"There’s a lot of interest in trying to determine the best approach to dealing with the massive subsurface waste at Hanford," said research team leader Jon Chorover, an associate professor of environmental chemistry at the University of Arizona in Tucson. "Our work helps predict the migration of this stuff. Understanding how these contaminants move in the soil can help with remediation."


Sunkyung Choi, a research associate at UA, will present the team’s finding at the 227th national meeting of the American Chemical Society.

Choi’s presentation, "Cesium and strontium uptake to clay minerals and their weathering products in a caustic waste," will be given at 4:15 p.m Pacific time on Monday, March 29, in Grand Ballroom D of the Anaheim Marriott, 700 West Convention Way, Anaheim, Calif.

Other members of the team include UA research specialist Mary Kay Amistadi and UA professor of materials science and engineering Supapan Seraphin. The research is funded by the U.S. Department of Energy.

At the Hanford Site, high-level nuclear waste from the manufacture of weapons is stored in 177 tanks buried in the soil. The waste contains toxic and highly radioactive elements, including plutonium, cesium 137 and strontium 90, mixed in with other materials that make the liquids in the tanks extremely caustic.

Weapons production began at the Hanford Site in 1944. Since then, 67 of the tanks have leaked, releasing highly radioactive liquid waste into the soil. Some of the contaminants have been found in the groundwater. Cost estimates for cleaning up the site run into the tens of billions of dollars.

Figuring out exactly how the wastes move through the soil is difficult because the tanks’ contents are complex mixtures of chemicals. But the contaminated soils and toxic wastes materials are too dangerous for the scientists to work with directly.

"If we were working with the concentrations of radioactivity that are out there, it would be lethal doses," Chorover said. "It would kill everyone in the lab."

He and his team are doing the next best thing. They have created non-radioactive chemical mixtures that match those in the Hanford tanks and are studying how those chemicals move through uncontaminated Hanford soil collected near the tanks.

In addition, to better understand how the different components of soil interact with the various chemicals, the team created some model soils to test with the Hanford-like chemical mixtures.

Even so, geochemical processes in soils occur over years, so the research, too, must be conducted over years, not days or weeks.

So to test how various liquid-and-soil mixtures interact over time, the researchers put the mixtures in small chemical-resistant plastic bottles and loaded the bottles onto mixers that look like mini-Ferris wheels.

The wheels, each of which holds more than 100 bottles, turn the bottles end-over-end. The wheels keep turning day, after day, after day. One of the experiments has been going on more than 2 years.

At set times, the researchers test the liquid and solid portions of bottles’ contents to see how chemicals from the liquid have reacted with the soil particles.

To the researchers’ surprise, over time the contaminants in the experimental set-ups were bound by newly formed clays in the soil, forming unusual minerals called zeolites and feldspathoids. The mineral particles, about a thousand times smaller than a grain of sand, don’t dissolve easily and therefore keep the contaminants trapped in the soil.

"We find the contaminants are remarkably slow to redissolve and appear to be more stable than initially thought," said Chorover. That stability may keep the contaminants from leaching deeper into the soil and the groundwater.

The team also found that the various clays from the soil and the various contaminants react differently with one another.

Although learning that contaminants get sequestered in solid particles seems like good news, Chorover is cautious.

"We really don’t know the lifetimes of these particles. We’ve shown it in the lab, but we don’t know what’s happening in the field," he said. "We do know contaminants are migrating through the soil in the field, so these laboratory results don’t explain all of what we see at Hanford."

The team’s next step is figuring out how stable the solids are and how long they last in the environment.

Jon Chorover | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>