Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid rain study reaches milestone, confirms soil nutrient depletion

29.03.2004


Researchers studying the environmental consequences of acid rain have reached an important milestone, adding evidence for a theory that has been the focus of much scientific debate. Publishing in the December, 2003 issue of the Soil Science Society of America Journal, a team at the University of Maine reported that a modest addition of acid in a paired watershed experiment resulted in a decrease of crucial nutrients in forest soils.



For more than 30 years, scientists in Europe and North America have recognized that acid rain could spur the loss of nutrients that are important for growing trees. Nutrients moving out of the soil into lakes and streams could also affect water quality. Nevertheless, observations that such losses have occurred have often been dismissed as extreme cases or as a result of natural changes in forested landscapes.

At the Bear Brook Watershed in Hancock County, Maine, a research team led by University of Maine scientists has now documented that under carefully controlled conditions, treating a watershed with additional acids accelerates the loss of two critical nutrients, calcium and magnesium.


"No one else has shown this at an ecosystem scale in this region," says Ivan Fernandez, UMaine professor of soil science and lead author of the paper. "It shows that we can experimentally induce (nutrient) depletion in a Maine forest with modest treatment." Co-authors were Lindsey Rustad of the USDA Forest Service; Stephen A. Norton and Steve Kahl, both of UMaine; and Bernard J. Cosby of the University of Virginia.

The Bear Brook Watershed Manipulation project began in the mid-1980s on land now owned by International Paper with funding from the U.S. Environmental Protection Agency. Located on Lead Mountain in Down East Maine, the site includes two side-by-side forested watersheds. Scientists constructed concrete weirs on each stream at the base of each watershed in collaboration with the U.S. Geological Survey. They installed continuous monitoring equipment to track changes in hydrology and water quality. In 1989, they began a bi-monthly routine of spreading ammonium sulfate, a commercial fertilizer, on the West Bear watershed to mimic high levels of acid rain. Subsequent studies have focused on changes to soil, water and vegetation on both the treated and untreated reference watersheds. What the Bear Brook research does not yet conclusively show, Fernandez adds, is whether the loss of soil nutrients is being balanced by gains from other processes in the untreated watershed. "It seems clear that the treatments have exceeded the natural supplies of nutrients in the treated watershed," says Fernandez. "Because there are no historical data on soils for comparisons, conclusions about the untreated watershed will require more time." Understanding the full nutrient picture in the untreated East Bear watershed would provide information that is representative of actual conditions in Maine and the Northeast.

"We can infer what is occurring from stream chemistry, and indeed, there appears to be a slow loss of base cations (nutrients) that may or may not be balanced by soil weathering processes," adds Fernandez. "Our treatment watershed suggests that whether it is happening or not across the Maine landscape, it will definitely happen with a little push."

An ongoing synthesis of data from acid rain research sites in North America and Europe includes the Maine research group and the Bear Brook site. Almost none of the watersheds show evidence of increasing nutrient concentrations in soils and surface waters, but many show evidence of a decreasing trend, says Fernandez. Results from the synthesis are still being developed.

The loss of nutrients due to acid rain is likely a regional phenomenon, although consequences for New England’s forests, lakes and streams vary across the landscape. These effects may become increasingly important to forest health if predicted climate warming occurs, Fernandez adds. Acidic inputs of nitrogen and sulfur are likely to interact with temperature and moisture changes in forested ecosystems.

Ivan Fernandez | EurekAlert!
Further information:
http://www.umaine.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>