Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid rain study reaches milestone, confirms soil nutrient depletion

29.03.2004


Researchers studying the environmental consequences of acid rain have reached an important milestone, adding evidence for a theory that has been the focus of much scientific debate. Publishing in the December, 2003 issue of the Soil Science Society of America Journal, a team at the University of Maine reported that a modest addition of acid in a paired watershed experiment resulted in a decrease of crucial nutrients in forest soils.



For more than 30 years, scientists in Europe and North America have recognized that acid rain could spur the loss of nutrients that are important for growing trees. Nutrients moving out of the soil into lakes and streams could also affect water quality. Nevertheless, observations that such losses have occurred have often been dismissed as extreme cases or as a result of natural changes in forested landscapes.

At the Bear Brook Watershed in Hancock County, Maine, a research team led by University of Maine scientists has now documented that under carefully controlled conditions, treating a watershed with additional acids accelerates the loss of two critical nutrients, calcium and magnesium.


"No one else has shown this at an ecosystem scale in this region," says Ivan Fernandez, UMaine professor of soil science and lead author of the paper. "It shows that we can experimentally induce (nutrient) depletion in a Maine forest with modest treatment." Co-authors were Lindsey Rustad of the USDA Forest Service; Stephen A. Norton and Steve Kahl, both of UMaine; and Bernard J. Cosby of the University of Virginia.

The Bear Brook Watershed Manipulation project began in the mid-1980s on land now owned by International Paper with funding from the U.S. Environmental Protection Agency. Located on Lead Mountain in Down East Maine, the site includes two side-by-side forested watersheds. Scientists constructed concrete weirs on each stream at the base of each watershed in collaboration with the U.S. Geological Survey. They installed continuous monitoring equipment to track changes in hydrology and water quality. In 1989, they began a bi-monthly routine of spreading ammonium sulfate, a commercial fertilizer, on the West Bear watershed to mimic high levels of acid rain. Subsequent studies have focused on changes to soil, water and vegetation on both the treated and untreated reference watersheds. What the Bear Brook research does not yet conclusively show, Fernandez adds, is whether the loss of soil nutrients is being balanced by gains from other processes in the untreated watershed. "It seems clear that the treatments have exceeded the natural supplies of nutrients in the treated watershed," says Fernandez. "Because there are no historical data on soils for comparisons, conclusions about the untreated watershed will require more time." Understanding the full nutrient picture in the untreated East Bear watershed would provide information that is representative of actual conditions in Maine and the Northeast.

"We can infer what is occurring from stream chemistry, and indeed, there appears to be a slow loss of base cations (nutrients) that may or may not be balanced by soil weathering processes," adds Fernandez. "Our treatment watershed suggests that whether it is happening or not across the Maine landscape, it will definitely happen with a little push."

An ongoing synthesis of data from acid rain research sites in North America and Europe includes the Maine research group and the Bear Brook site. Almost none of the watersheds show evidence of increasing nutrient concentrations in soils and surface waters, but many show evidence of a decreasing trend, says Fernandez. Results from the synthesis are still being developed.

The loss of nutrients due to acid rain is likely a regional phenomenon, although consequences for New England’s forests, lakes and streams vary across the landscape. These effects may become increasingly important to forest health if predicted climate warming occurs, Fernandez adds. Acidic inputs of nitrogen and sulfur are likely to interact with temperature and moisture changes in forested ecosystems.

Ivan Fernandez | EurekAlert!
Further information:
http://www.umaine.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>