Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution history documented through shell remains provides tool to study ecosystem change

29.03.2004


Without destroying endangered freshwater mussels



In the early 1900s, there were 42 species of freshwater mussels in the North Fork of the Holston River in Southwest Virginia. There were 33 downstream of Saltville. Now there are only nine species of mussels downstream of Saltville, and none directly below Saltville. When Virginia Tech geosciences student Megan Brown of Colonial Heights, Va., decided to study the local extinctions of these creatures, some of which have been known to live 200 years and many of which are endangered species, she didn’t want to have to use the traditional means of pulverizing them to measure chemical uptake.

At the joint meeting of the Northeastern and Southeastern Sections of the Geological Society of America, Brown will report on her non-invasive means to determine whether pollution or environmental stresses are threatening freshwater mussels. The GSA meeting is March 25-27 in Tysons Corner, Va.


Brown measured the mercury content in freshwater mussel shells in the river near Saltville, Va., where industry had polluted the river from 1950 until 1972, measured the damage done to the shells, and observed stages of recovery.

She looked at two sites upstream, unaffected by the pollution, at a site at Saltville, the point of the contamination, and at two sites downstream. "There was a very low level of mercury in shells upstream. I had to go 30 miles downstream to find a site with mercury levels at the background levels of the upstream sites," Brown says

Dead mussel shells reflected the levels of mercury, with high levels directly below Saltville and decreasing levels with increasing distance from Saltville. Brown examined shells to see if those from areas with no living populations looked different from shells in areas with living populations. She observed such characteristics as whether shells were still hinged together, external luster, edge preservation, and how broken they were.

"Wear could have been due to a change in stream gradient, but we found the most destruction was at the site of heaviest contamination and determined the heavy destruction was because there was no input of fresh-dead material," Brown says. "And wear was present whether the shell was thin or thick."

By documenting what happened to the mussels near Saltville, Brown has developed a strategy for study of other areas. "We can look at geochemical characteristics of the shell to determine what kind of pollution has impacted a system – to determine whether the local extinction is from pollution or an environmental stress such as heavy sedimentation," explains Brown. "And we can observe the kinds of destruction, such as the kinds of damage to shells, to help determine how long ago populations were still alive."

Brown will present the paper, "Using geochemical and taphonomic signatures of freshwater mussel shells to explore industry-related extirpations in the North Fork Holston River, Va. (60-8)," at 10:40 a.m. Saturday, March 27, in the Lord Thomas Fairfax Room of the Hilton McLean Tysons Corner. Co-authors are Virginia Tech geological sciences professor Michal Kowalewski, biology professor Donald Cherry, fisheries and wildlife professor Richard Neves, and geosciences professor Madeline Schreiber.

Brown, who received her undergraduate degree in biology from the University of Virginia, says she undertook the mussel study because "I’m interested in learning about the problems we’ve created and how we can remedy them." She expects to receive her master’s degree from Virginia Tech in May and would like to work with the Fish and Wildlife Service.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>