Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution history documented through shell remains provides tool to study ecosystem change

29.03.2004


Without destroying endangered freshwater mussels



In the early 1900s, there were 42 species of freshwater mussels in the North Fork of the Holston River in Southwest Virginia. There were 33 downstream of Saltville. Now there are only nine species of mussels downstream of Saltville, and none directly below Saltville. When Virginia Tech geosciences student Megan Brown of Colonial Heights, Va., decided to study the local extinctions of these creatures, some of which have been known to live 200 years and many of which are endangered species, she didn’t want to have to use the traditional means of pulverizing them to measure chemical uptake.

At the joint meeting of the Northeastern and Southeastern Sections of the Geological Society of America, Brown will report on her non-invasive means to determine whether pollution or environmental stresses are threatening freshwater mussels. The GSA meeting is March 25-27 in Tysons Corner, Va.


Brown measured the mercury content in freshwater mussel shells in the river near Saltville, Va., where industry had polluted the river from 1950 until 1972, measured the damage done to the shells, and observed stages of recovery.

She looked at two sites upstream, unaffected by the pollution, at a site at Saltville, the point of the contamination, and at two sites downstream. "There was a very low level of mercury in shells upstream. I had to go 30 miles downstream to find a site with mercury levels at the background levels of the upstream sites," Brown says

Dead mussel shells reflected the levels of mercury, with high levels directly below Saltville and decreasing levels with increasing distance from Saltville. Brown examined shells to see if those from areas with no living populations looked different from shells in areas with living populations. She observed such characteristics as whether shells were still hinged together, external luster, edge preservation, and how broken they were.

"Wear could have been due to a change in stream gradient, but we found the most destruction was at the site of heaviest contamination and determined the heavy destruction was because there was no input of fresh-dead material," Brown says. "And wear was present whether the shell was thin or thick."

By documenting what happened to the mussels near Saltville, Brown has developed a strategy for study of other areas. "We can look at geochemical characteristics of the shell to determine what kind of pollution has impacted a system – to determine whether the local extinction is from pollution or an environmental stress such as heavy sedimentation," explains Brown. "And we can observe the kinds of destruction, such as the kinds of damage to shells, to help determine how long ago populations were still alive."

Brown will present the paper, "Using geochemical and taphonomic signatures of freshwater mussel shells to explore industry-related extirpations in the North Fork Holston River, Va. (60-8)," at 10:40 a.m. Saturday, March 27, in the Lord Thomas Fairfax Room of the Hilton McLean Tysons Corner. Co-authors are Virginia Tech geological sciences professor Michal Kowalewski, biology professor Donald Cherry, fisheries and wildlife professor Richard Neves, and geosciences professor Madeline Schreiber.

Brown, who received her undergraduate degree in biology from the University of Virginia, says she undertook the mussel study because "I’m interested in learning about the problems we’ve created and how we can remedy them." She expects to receive her master’s degree from Virginia Tech in May and would like to work with the Fish and Wildlife Service.

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>