Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undisturbed Amazonian forests are changing, say scientists

11.03.2004


A research team of U.S. and Brazilian scientists has shown that rainforests in central Amazonia are experiencing striking changes in dynamics and species composition. Although the cause of these changes - in what are believed to be completely undisturbed, old-growth forests - is uncertain, a leading explanation is that they are being driven by rising levels of carbon dioxide in the atmosphere.



Carbon dioxide levels have risen by 30% in the last 200 years as a result of industrial emissions, automobiles, and rapid forest burning, especially in the tropics. Much of this increase has occurred since 1960. Plants use carbon dioxide from the air for photosynthesis.

"The changes in Amazonian forests really jump out at you," said William Laurance, a U.S. scientist with the Smithsonian Tropical Research Institute in Panama. Laurance was the lead author of the paper, which appeared this week in the scientific journal Nature (Mar 11). "It’s a little scary to realize that seemingly pristine forests can change so quickly and dramatically."


For the past two decades, the research team studied the fate of nearly 14,000 trees in the central Amazon, scattered across a landscape of 120 square miles in area. During the course of the study, most species of trees began growing faster. The forests also became more dynamic, with existing trees dying faster and being replaced by young new trees.

Even more important is that the species composition of the forest is changing. "There clearly are winners and losers," said Alexandre Oliveira of the University of São Paulo, Brazil, another team member. "In general, large, fast-growing trees are winning at the expense of smaller trees that live in the forest understory."

"The decline of many small trees is intriguing because they tend to be so specialized," said Henrique Nascimento, a Brazilian researcher at the Smithsonian Tropical Research Institute. "They live in the dark interior of the forest, and are the only trees that can flower and reproduce in deep shade."

The most likely reason for these changes, say the researchers, is that rising carbon-dioxide levels are fertilizing the forests, leading to faster growth and more competition among trees for light, water, and soil nutrients. Under these conditions, big, fast-growing species of trees probably have an advantage over small, slower-growing trees.

"Sadly, this could be a signal that the forest’s ecology is changing in fundamental ways," said team-leader Laurance. "Tropical rainforests are renowned for having lots of highly specialized species. If you change the tree communities then other species-especially the animals that feed on and pollinate the trees-will undoubtedly change as well."

"This appears to be yet another signal of effects on nature from increasing greenhouse gas concentrations and associated climate change," said Thomas Lovejoy of the Heinz Center for Science, Economics and Environment in Washington, D.C., who helped to establish the tree study in central Amazonian over two decades ago. "We really need more research to see if these remarkable changes are also happening in other tropical forests around the world. If they are, then it’s likely that even the world’s remotest forests are now being altered by human activities."



The Biological Dynamics of Forest Fragment Project, a joint effort of the National Institute for Amazonian Research (INPA) in Brazil and the Smithsonian Tropical Research Institute, seeks to answer questions about plant and animal relations, the biology of extinction, the process of forest regeneration, and the effects of forest edge and fragmentation on the genetic structure of tropical species.

The Smithsonian Tropical Research Institute is an international research center established in Panama by the Smithsonian Institution to increase knowledge of the past, present and future of tropical biodiversity and its importance to humanity. For more than 90 years, researchers, students and associates have conducted research in forest and marine habitats in Panama and at other sites throughout tropical regions of the world.

Dr. William F. Laurance | EurekAlert!
Further information:
http://www.stri.org
http://www.si.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>