Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ontario’s "cottage country" lakes see increase in taste and odour-causing algae


Ninety per cent of the lakes surveyed in a new study of Ontario’s “cottage country” north of Toronto have seen a significant rise in taste and odour-causing algae – most dramatically in the past 20 years, the researchers report.

Photo credit: Ontario Ministry of the Environment (MOE).

One of the most frequent complaints voiced by cottagers to local officials is that water in their lakes periodically tastes or smells bad.

A common cause of such problems is blooms of small algae (microscopic plants) that thrive in some of these lakes. Although the frequency of taste and odour complaints seems to be growing steadily, it is unclear whether the problems themselves are increasing or if local users are more sensitized to these issues.

A study published in the current edition of the scientific journal Freshwater Biology examines sediment from 50 lake bottoms in the Muskoka-Haliburton region of Ontario. The results show taste and odour-causing algae have increased in 90 per cent of these lakes since the early 1800s, with a marked rise over the past two decades.

This phenomenon can’t be blamed solely on “local human impact,” says team member John Smol, Canada Research Chair in Environmental Change and co-head of Queen’s University’s Paleoecological Environmental Assessment and Research Laboratory (PEARL). “It’s a complex of patterns, which we think involves some combination of acidic deposition and climate change,” explains Dr. Smol.

“The timing indicates that these patterns are the result of one or more human-caused stresses operating at a broad, regional scale,” says lead investigator Andrew Paterson, a former doctoral student at Queen’s. “We present new evidence suggesting that disturbances such as acid rain and climatic warming may produce significant, unprecedented changes to the algae of inland lakes, with important implications for water quality.”

Lake water that smells and tastes foul can be traced to a variety of sources, including chemical pollution and dead fish, but the most common cause is a group of algae called chrysophytes. These microscopic organisms produce scales and spines made of glass that are well preserved in lake sediment.

Through an analysis of sediment cores, the researchers were able to reconstruct the history of these lakes, and compare the distribution of chrysophyte algae over different time periods. Their study shows that substantial increase began in the 1930s-1950s, with the sharpest rise over the past two decades.

“This is a classic example where environmental issues have been debated, and decisions made, based on very short-term data sets – typically two to three years,” says Dr. Smol. “Yet most of the answers lie much further back in time. These sediment records are extremely valuable, because no one was measuring algae 80 or 100 years ago.”

Also on the research team are biologists Brian Cumming from Queen’s and Roland Hall from the University of Waterloo. Funding for the study was provided by an Ontario Graduate Scholarship program, the Ontario Ministry of the Environment, and the Natural Sciences and Engineering Research Council (NSERC).

Nancy Dorrance | Queen´s University
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>