Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ontario’s "cottage country" lakes see increase in taste and odour-causing algae

09.03.2004


Ninety per cent of the lakes surveyed in a new study of Ontario’s “cottage country” north of Toronto have seen a significant rise in taste and odour-causing algae – most dramatically in the past 20 years, the researchers report.


Photo credit: Ontario Ministry of the Environment (MOE).



One of the most frequent complaints voiced by cottagers to local officials is that water in their lakes periodically tastes or smells bad.

A common cause of such problems is blooms of small algae (microscopic plants) that thrive in some of these lakes. Although the frequency of taste and odour complaints seems to be growing steadily, it is unclear whether the problems themselves are increasing or if local users are more sensitized to these issues.


A study published in the current edition of the scientific journal Freshwater Biology examines sediment from 50 lake bottoms in the Muskoka-Haliburton region of Ontario. The results show taste and odour-causing algae have increased in 90 per cent of these lakes since the early 1800s, with a marked rise over the past two decades.

This phenomenon can’t be blamed solely on “local human impact,” says team member John Smol, Canada Research Chair in Environmental Change and co-head of Queen’s University’s Paleoecological Environmental Assessment and Research Laboratory (PEARL). “It’s a complex of patterns, which we think involves some combination of acidic deposition and climate change,” explains Dr. Smol.

“The timing indicates that these patterns are the result of one or more human-caused stresses operating at a broad, regional scale,” says lead investigator Andrew Paterson, a former doctoral student at Queen’s. “We present new evidence suggesting that disturbances such as acid rain and climatic warming may produce significant, unprecedented changes to the algae of inland lakes, with important implications for water quality.”

Lake water that smells and tastes foul can be traced to a variety of sources, including chemical pollution and dead fish, but the most common cause is a group of algae called chrysophytes. These microscopic organisms produce scales and spines made of glass that are well preserved in lake sediment.

Through an analysis of sediment cores, the researchers were able to reconstruct the history of these lakes, and compare the distribution of chrysophyte algae over different time periods. Their study shows that substantial increase began in the 1930s-1950s, with the sharpest rise over the past two decades.

“This is a classic example where environmental issues have been debated, and decisions made, based on very short-term data sets – typically two to three years,” says Dr. Smol. “Yet most of the answers lie much further back in time. These sediment records are extremely valuable, because no one was measuring algae 80 or 100 years ago.”

Also on the research team are biologists Brian Cumming from Queen’s and Roland Hall from the University of Waterloo. Funding for the study was provided by an Ontario Graduate Scholarship program, the Ontario Ministry of the Environment, and the Natural Sciences and Engineering Research Council (NSERC).

Nancy Dorrance | Queen´s University
Further information:
http://qnc.queensu.ca/story_loader.php?id=404cb24866958

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>