Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New map predicts where wolves will attack

27.02.2004


Scientists from the New York-based Wildlife Conservation Society and other groups have developed a high-tech map that predicts where wolves will prey on livestock, which in turn may allow wildlife managers and ranchers to prevent attacks in the first place. The groups, which also included authors from the Wisconsin Dept. of Natural Resources and University of Wisconsin in Madison, published their results in the latest issue of the journal Conservation Biology.



Using geographic information system (GIS) mapping, the scientists looked at road density, farm size, availability of deer and other factors to develop statewide maps for Wisconsin and Minnesota. Despite dramatic differences in the two states’ wolf populations, hunting policies, and farm sizes, the maps revealed several similarities among the sites where wolves had preyed on cattle in the past.

Each town in the two states was assigned a color-code ranging from red (highest risk) to blue (lowest risk). Low risk townships included those with lots of cropland, wetlands and open water. Overall, just 0.3 percent of Wisconsin’s towns were classified as highest risk and none occurred in Minnesota. The two higher risk classes of townships (red and orange) were clustered in two areas that had not previously been identified as problematic.


The map revealed that southwest Wisconsin faced moderate to high risk, an area where breeding packs of wolves have not yet recolonized. The map also revealed that highest risk townships were clustered along the edge of the wolf population--areas with the lowest habitat suitability for wolves and where newly formed wolf packs encounter landowners with little, recent experience of conflict with wolves. Among farms, the authors found that those with large land holdings and large herds were more likely to suffer losses from wolves. In Minnesota, risk was particularly high for farms sharing the land with dense deer populations.

"We are optimistic that these maps will be used to reduce conflict between wolves and people," said Wildlife Conservation Society scientist Adrian Treves, lead author of the study. "By knowing in advance the kind of areas where wolves will prey on livestock, non lethal controls can be employed so that wolves won’t be needlessly killed. Managers may be able to focus their outreach and interventions where it is most needed."

Techniques such as guard animals, improved fencing, and new scare devices that use random sounds and light can deter wolves from preying on livestock. Last year, Treves and other colleagues published a study showing how "audio scarecrows" that played amplified sounds of everything from helicopters to gunfire drove bears and wolves away from fenced properties.

Treves also said that the mapping technique could be adapted to other areas where human/wildlife conflicts occur, provided enough geographic data could be gathered.

"Whether it’s tigers in India or black bears in New Jersey, this mapping technique could greatly reduce needless killing of wildlife, by preventing human/wildlife conflicts in the first place," he said.


Copies of the study and maps available through WCS

Additional Contact information:
Stephen Sautner (718-220-3682; ssautner@wcs.org)
John Delaney (718-220-3275; jdelaney@wcs.org)

Stephen Sautner | EurekAlert!
Further information:
http://www.wcs.org/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>