Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators and human health

20.02.2004


Exploring the role of predators in keeping pathogens at bay



Lyme disease, bubonic plague, and hantavirus pulmonary syndrome--all potentially serious disease threats to people--are carried by non-human vertebrates, most often rodents, who are the host species for a plethora of pathogens. Recent outbreaks of Monkeypox and Severe Acute Respiratory Syndrome have generated fresh concern about how pathogens move from non-human carriers to people. The paper, "Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs," appears in this month’s issue of the Ecological Society of America’s journal Frontiers in Ecology and the Environment and explores the role of predators in curbing disease outbreaks in humans.

Authors Richard Ostfeld (Institute of Ecosystem Studies) and Robert Holt (University of Florida) found that different predator types influence rodent populations in a range of ways, with some very effectively regulating rodent numbers while other predators actually cause periodic rodent population booms.


Specifically, Ostfeld and Holt found that predators that are not picky about what small animals they eat and are also highly mobile--such as foxes, coyotes, and falcons--appear to protect human health by constantly suppressing rodent numbers. In contrast, predators such as weasels specialize, eating only certain rodents. As a result those rodent populations fluctuate dramatically and during population peaks conceivably promote transmission of rodent-borne pathogens to people.

"It seems likely that when rodent populations are at chronically low densities, the incidence of disease transmission to people will also be low," says Ostfeld. "During population peaks and when rodents invade houses, we often see a higher incidence of disease outbreaks in people."

However, the researchers say that much more work needs to be done to understand the multiple variables driving the emergence of infectious diseases from wildlife to human populations.

"Knowing that predators bring down rodent populations is not enough," says Ostfeld. "We need to know how strong this effect is compared to other influences--such as food supply--on rodent populations."

Only a few studies have looked at both effects simultaneously, says Ostfeld. While scientists know that populations of deer mice, for instance, grow in correlation with plentiful acorn crops, the relative role of predators in influencing abundance in the species is still at a nascent stage.

Furthermore, what is really more important than a rodent species’ population per se, explains Ostfeld, is to understand how population dynamics drive rodent behavior which in turn influences disease transmission to humans. According to the researchers, some of the most important disease agents move from one rodent to another during fights or other social contacts, which tend to increase with density.

Pathogens have been jumping to people from wildlife or livestock since antiquity, with some 60 percent of all infectious diseases affecting humans stemming from non-human vertebrates. Modes of transmission include swallowing or inhaling waste products from an infected animal, eating or being bitten by an infected animal, or via parasites such as mosquitoes, fleas, or ticks.


Frontiers’ February 2004 issue marks the one-year anniversary of this latest ESA publication, which the Society launched in February 2003. International in scope and interdisciplinary in approach, the journal (www.frontiersinecology.org) emphasizes practical applications and new approaches to old problems, addressing global environmental issues, cross disciplinary efforts, and new technologies. Its many features--ranging from guest editorials and multi-author debates, to synthetic reviews, short research communications, and columns--have made the newest ESA journal accessible to researchers, resource managers, educators, and policy makers.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>