Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shrinking sink? Carbon fertilization may be flimsy weapon against warming

16.02.2004


A growing body of evidence questions calculations by the Intergovernmental Panel on Climate Change that the land will automatically provide a significant, long-term carbon "sink" to offset some of the effects of greenhouse gas emissions. Scientists reported these findings today at the 2004 AAAS (Triple-A-S) Annual Meeting.



The latest information about carbon dioxide fertilization – by which plants soak up carbon from the atmosphere – "really paints a different picture of the way the world works," said panelist Chris Field of the Carnegie Institution of Washington.

In a book edited by Field and scheduled for publication in late February, researchers concluded that the land contains many large pools of carbon that are likely to shrink in the coming century.


A key reason for the differing conclusions, Field and his colleagues found, is that the predictions of the Intergovernmental Panel on Climate Change and other studies have relied on models that don’t reflect some of the major processes by which carbon circulates through the environment.

Field and his colleagues also have discovered in a previous study that there may not be enough biologically available nitrogen to support certain optimistic estimates of the land’s capacity for carbon fertilization.

"If you put together these two lines of evidence, we’re looking at a future in which we may see less carbon being removed from the atmosphere," Field said.

"The fact that carbon dioxide fertilization is likely to be more modest does not imply that carbon management through planting trees is a bad idea," Field explained. "Planting trees is a great idea. It’s just that the trees will grow at their ’normal’ rates or slightly faster, rather than at supercharged rates."

Field co-organized the symposium with Stephen Schneider of Stanford University, pulling together speakers studying a variety of different landscapes, who met at the Annual Meeting of the American Association for the Advancement of Science (AAAS).

Jeff Dukes of the University of Massachusetts Boston has been monitoring changes in a California grassland, over five years of exposure to various types of environmental change. Presenting a new analysis covering five years of data, Dukes reported that their response to elevated atmospheric carbon dioxide was minimal.

"Carbon dioxide may boost or suppress grassland productivity in some years, but over the longer term it’s pretty much a wash," Dukes said.

A seven-year study of a pine forest has produced similar results. According to William Schlesinger of the Nicholas School at Duke University, the Duke Forest Free Air Carbon Enrichment (FACE) experiment showed that enriching carbon dioxide in a young loblolly pine initially enhanced growth by 10 to 20 percent, with higher values in the driest years. But, various lines of evidence suggest that soil nutrients are deficient to support long-term growth stimulation, Schlesinger said.

Schlesinger stressed that planting trees is an effective way to sequester carbon, but "shouldn’t expect those trees to grow much faster in the high CO2 world of the future."

Ultimately, the Earth’s ability to take up carbon will depend on the oceans. The oceans have already absorbed some 400 billion tons of fossil fuel carbon dioxide, and this trend will continue; ocean uptake now is more than 20 million tons of carbon dioxide per day, according to Peter Brewer of the Monterey Bay Aquarium Research Institute.

"But is this a blessing or a problem?" he asked.

Some researchers have considered direct ocean disposal of carbon dioxide, raising questions as to the impact of changing ocean acidity, or "pH" on marine life. Experiments to examine the impact of elevated carbon dioxide levels on the land are commonplace.

Brewer reported on the first small-scale ocean experiments, in which his research team added carbon dioxide to the deep-sea off California, and thus perturbed the pH of the surrounding ocean, exposing animals to waters that may simulate the ocean of the late 21st century.

He described some new experimental techniques that should make it possible to extend these types of experiments, making them both spatially larger and longer-lasting.

"It’s the only way to find out how coral reefs, deep-sea fisheries and other marine environments will react to a change in ocean pH; you have to do the experiment," he said.

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>