Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shrinking sink? Carbon fertilization may be flimsy weapon against warming

16.02.2004


A growing body of evidence questions calculations by the Intergovernmental Panel on Climate Change that the land will automatically provide a significant, long-term carbon "sink" to offset some of the effects of greenhouse gas emissions. Scientists reported these findings today at the 2004 AAAS (Triple-A-S) Annual Meeting.



The latest information about carbon dioxide fertilization – by which plants soak up carbon from the atmosphere – "really paints a different picture of the way the world works," said panelist Chris Field of the Carnegie Institution of Washington.

In a book edited by Field and scheduled for publication in late February, researchers concluded that the land contains many large pools of carbon that are likely to shrink in the coming century.


A key reason for the differing conclusions, Field and his colleagues found, is that the predictions of the Intergovernmental Panel on Climate Change and other studies have relied on models that don’t reflect some of the major processes by which carbon circulates through the environment.

Field and his colleagues also have discovered in a previous study that there may not be enough biologically available nitrogen to support certain optimistic estimates of the land’s capacity for carbon fertilization.

"If you put together these two lines of evidence, we’re looking at a future in which we may see less carbon being removed from the atmosphere," Field said.

"The fact that carbon dioxide fertilization is likely to be more modest does not imply that carbon management through planting trees is a bad idea," Field explained. "Planting trees is a great idea. It’s just that the trees will grow at their ’normal’ rates or slightly faster, rather than at supercharged rates."

Field co-organized the symposium with Stephen Schneider of Stanford University, pulling together speakers studying a variety of different landscapes, who met at the Annual Meeting of the American Association for the Advancement of Science (AAAS).

Jeff Dukes of the University of Massachusetts Boston has been monitoring changes in a California grassland, over five years of exposure to various types of environmental change. Presenting a new analysis covering five years of data, Dukes reported that their response to elevated atmospheric carbon dioxide was minimal.

"Carbon dioxide may boost or suppress grassland productivity in some years, but over the longer term it’s pretty much a wash," Dukes said.

A seven-year study of a pine forest has produced similar results. According to William Schlesinger of the Nicholas School at Duke University, the Duke Forest Free Air Carbon Enrichment (FACE) experiment showed that enriching carbon dioxide in a young loblolly pine initially enhanced growth by 10 to 20 percent, with higher values in the driest years. But, various lines of evidence suggest that soil nutrients are deficient to support long-term growth stimulation, Schlesinger said.

Schlesinger stressed that planting trees is an effective way to sequester carbon, but "shouldn’t expect those trees to grow much faster in the high CO2 world of the future."

Ultimately, the Earth’s ability to take up carbon will depend on the oceans. The oceans have already absorbed some 400 billion tons of fossil fuel carbon dioxide, and this trend will continue; ocean uptake now is more than 20 million tons of carbon dioxide per day, according to Peter Brewer of the Monterey Bay Aquarium Research Institute.

"But is this a blessing or a problem?" he asked.

Some researchers have considered direct ocean disposal of carbon dioxide, raising questions as to the impact of changing ocean acidity, or "pH" on marine life. Experiments to examine the impact of elevated carbon dioxide levels on the land are commonplace.

Brewer reported on the first small-scale ocean experiments, in which his research team added carbon dioxide to the deep-sea off California, and thus perturbed the pH of the surrounding ocean, exposing animals to waters that may simulate the ocean of the late 21st century.

He described some new experimental techniques that should make it possible to extend these types of experiments, making them both spatially larger and longer-lasting.

"It’s the only way to find out how coral reefs, deep-sea fisheries and other marine environments will react to a change in ocean pH; you have to do the experiment," he said.

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>