Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shrinking sink? Carbon fertilization may be flimsy weapon against warming

16.02.2004


A growing body of evidence questions calculations by the Intergovernmental Panel on Climate Change that the land will automatically provide a significant, long-term carbon "sink" to offset some of the effects of greenhouse gas emissions. Scientists reported these findings today at the 2004 AAAS (Triple-A-S) Annual Meeting.



The latest information about carbon dioxide fertilization – by which plants soak up carbon from the atmosphere – "really paints a different picture of the way the world works," said panelist Chris Field of the Carnegie Institution of Washington.

In a book edited by Field and scheduled for publication in late February, researchers concluded that the land contains many large pools of carbon that are likely to shrink in the coming century.


A key reason for the differing conclusions, Field and his colleagues found, is that the predictions of the Intergovernmental Panel on Climate Change and other studies have relied on models that don’t reflect some of the major processes by which carbon circulates through the environment.

Field and his colleagues also have discovered in a previous study that there may not be enough biologically available nitrogen to support certain optimistic estimates of the land’s capacity for carbon fertilization.

"If you put together these two lines of evidence, we’re looking at a future in which we may see less carbon being removed from the atmosphere," Field said.

"The fact that carbon dioxide fertilization is likely to be more modest does not imply that carbon management through planting trees is a bad idea," Field explained. "Planting trees is a great idea. It’s just that the trees will grow at their ’normal’ rates or slightly faster, rather than at supercharged rates."

Field co-organized the symposium with Stephen Schneider of Stanford University, pulling together speakers studying a variety of different landscapes, who met at the Annual Meeting of the American Association for the Advancement of Science (AAAS).

Jeff Dukes of the University of Massachusetts Boston has been monitoring changes in a California grassland, over five years of exposure to various types of environmental change. Presenting a new analysis covering five years of data, Dukes reported that their response to elevated atmospheric carbon dioxide was minimal.

"Carbon dioxide may boost or suppress grassland productivity in some years, but over the longer term it’s pretty much a wash," Dukes said.

A seven-year study of a pine forest has produced similar results. According to William Schlesinger of the Nicholas School at Duke University, the Duke Forest Free Air Carbon Enrichment (FACE) experiment showed that enriching carbon dioxide in a young loblolly pine initially enhanced growth by 10 to 20 percent, with higher values in the driest years. But, various lines of evidence suggest that soil nutrients are deficient to support long-term growth stimulation, Schlesinger said.

Schlesinger stressed that planting trees is an effective way to sequester carbon, but "shouldn’t expect those trees to grow much faster in the high CO2 world of the future."

Ultimately, the Earth’s ability to take up carbon will depend on the oceans. The oceans have already absorbed some 400 billion tons of fossil fuel carbon dioxide, and this trend will continue; ocean uptake now is more than 20 million tons of carbon dioxide per day, according to Peter Brewer of the Monterey Bay Aquarium Research Institute.

"But is this a blessing or a problem?" he asked.

Some researchers have considered direct ocean disposal of carbon dioxide, raising questions as to the impact of changing ocean acidity, or "pH" on marine life. Experiments to examine the impact of elevated carbon dioxide levels on the land are commonplace.

Brewer reported on the first small-scale ocean experiments, in which his research team added carbon dioxide to the deep-sea off California, and thus perturbed the pH of the surrounding ocean, exposing animals to waters that may simulate the ocean of the late 21st century.

He described some new experimental techniques that should make it possible to extend these types of experiments, making them both spatially larger and longer-lasting.

"It’s the only way to find out how coral reefs, deep-sea fisheries and other marine environments will react to a change in ocean pH; you have to do the experiment," he said.

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>