Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shrinking sink? Carbon fertilization may be flimsy weapon against warming

16.02.2004


A growing body of evidence questions calculations by the Intergovernmental Panel on Climate Change that the land will automatically provide a significant, long-term carbon "sink" to offset some of the effects of greenhouse gas emissions. Scientists reported these findings today at the 2004 AAAS (Triple-A-S) Annual Meeting.



The latest information about carbon dioxide fertilization – by which plants soak up carbon from the atmosphere – "really paints a different picture of the way the world works," said panelist Chris Field of the Carnegie Institution of Washington.

In a book edited by Field and scheduled for publication in late February, researchers concluded that the land contains many large pools of carbon that are likely to shrink in the coming century.


A key reason for the differing conclusions, Field and his colleagues found, is that the predictions of the Intergovernmental Panel on Climate Change and other studies have relied on models that don’t reflect some of the major processes by which carbon circulates through the environment.

Field and his colleagues also have discovered in a previous study that there may not be enough biologically available nitrogen to support certain optimistic estimates of the land’s capacity for carbon fertilization.

"If you put together these two lines of evidence, we’re looking at a future in which we may see less carbon being removed from the atmosphere," Field said.

"The fact that carbon dioxide fertilization is likely to be more modest does not imply that carbon management through planting trees is a bad idea," Field explained. "Planting trees is a great idea. It’s just that the trees will grow at their ’normal’ rates or slightly faster, rather than at supercharged rates."

Field co-organized the symposium with Stephen Schneider of Stanford University, pulling together speakers studying a variety of different landscapes, who met at the Annual Meeting of the American Association for the Advancement of Science (AAAS).

Jeff Dukes of the University of Massachusetts Boston has been monitoring changes in a California grassland, over five years of exposure to various types of environmental change. Presenting a new analysis covering five years of data, Dukes reported that their response to elevated atmospheric carbon dioxide was minimal.

"Carbon dioxide may boost or suppress grassland productivity in some years, but over the longer term it’s pretty much a wash," Dukes said.

A seven-year study of a pine forest has produced similar results. According to William Schlesinger of the Nicholas School at Duke University, the Duke Forest Free Air Carbon Enrichment (FACE) experiment showed that enriching carbon dioxide in a young loblolly pine initially enhanced growth by 10 to 20 percent, with higher values in the driest years. But, various lines of evidence suggest that soil nutrients are deficient to support long-term growth stimulation, Schlesinger said.

Schlesinger stressed that planting trees is an effective way to sequester carbon, but "shouldn’t expect those trees to grow much faster in the high CO2 world of the future."

Ultimately, the Earth’s ability to take up carbon will depend on the oceans. The oceans have already absorbed some 400 billion tons of fossil fuel carbon dioxide, and this trend will continue; ocean uptake now is more than 20 million tons of carbon dioxide per day, according to Peter Brewer of the Monterey Bay Aquarium Research Institute.

"But is this a blessing or a problem?" he asked.

Some researchers have considered direct ocean disposal of carbon dioxide, raising questions as to the impact of changing ocean acidity, or "pH" on marine life. Experiments to examine the impact of elevated carbon dioxide levels on the land are commonplace.

Brewer reported on the first small-scale ocean experiments, in which his research team added carbon dioxide to the deep-sea off California, and thus perturbed the pH of the surrounding ocean, exposing animals to waters that may simulate the ocean of the late 21st century.

He described some new experimental techniques that should make it possible to extend these types of experiments, making them both spatially larger and longer-lasting.

"It’s the only way to find out how coral reefs, deep-sea fisheries and other marine environments will react to a change in ocean pH; you have to do the experiment," he said.

Monica Amarelo | EurekAlert!
Further information:
http://www.aaas.org/

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>