Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bighorn sheep threatened by climate change, finds new study

12.02.2004


A study led by researchers at the University of California, Berkeley, has linked population declines of California’s desert bighorn sheep with the effects of climate change. What’s more, many of the state’s remaining bighorn populations could face extinction if certain global warming forecasts for the next 60 years come true.


A desert bighorn sheep in the Old Woman Mountains of the Mojave Desert. (Photos by Clinton W. Epps, UC Berkeley)



In the study, which is published in the current issue of Conservation Biology, the authors found that of the 80 groups of desert bighorn sheep known to have roamed California’s mountains over the past century, 30 are now extinct.

In their investigation of the population decline, the researchers evaluated impacts ranging from contact with domestic livestock, which can lead to the spread of disease and competition for food, to poaching, mining, human disturbance and other factors. They also analyzed climatic variables such as temperature and precipitation that affect the availability of vegetation and dependable sources of spring water for the sheep.


UC Berkeley researchers have linked the effects of climate change with population declines of sheep in California, like this bighorn in the Old Woman Mountains of the Mojave Desert.

"Climate was consistently correlated with extinction in a way the other factors weren’t," said Clinton W. Epps, a doctoral student in environmental science, policy and management at UC Berkeley’s College of Natural Resources and lead author of the paper. "The harsh environment inhabited by desert bighorn sheep already has them walking on a knife’s edge. It doesn’t take too much to push them off. The bottom line is that more than one-third of the populations that were once known are now gone," said Epps.

From 1901 to 1987, the mean annual temperature in the deserts of the southwestern United States increased by about 1.8 degrees Fahrenheit, which is considered significant by climatologists. In addition, annual precipitation dropped about 20 percent in southeastern California over the last century. According to the study, groups of bighorn sheep were more likely to be lost in lower elevation mountains where there were higher average temperatures and less precipitation.

The authors examined population data on the state’s desert bighorn sheep, or Ovis canadensis nelsoni, collected since 1940 by biologists and California Department of Fish and Game researchers. They also used historical records from local areas where the sheep were known to have lived, but had since disappeared.

Desert bighorn sheep primarily live in small, isolated groups throughout the mountain ranges of the Sonoran, Mojave and Great Basin deserts of the southwestern United States. In southwestern California, they are also found in the Transverse and Peninsular mountain ranges.

Bighorn has been a species of concern among conservationists since they were first protected by California legislation in 1873. Statewide, the population of desert bighorn is estimated at 3,500. Bighorn in the Peninsular and Sierra Nevada mountain ranges are listed as state and federal endangered species.

"When you start losing bighorn sheep from some mountain ranges, it affects the collective population," said Dale R. McCullough, professor of ecosystem sciences at UC Berkeley’s College of Natural Resources and co-author of the paper. "Any decline in vegetation makes it more difficult for sheep to move among the different habitat clusters, which have become fewer and more spread out. Where they used to be able to move more readily to other mountain ranges to help repopulate or recolonize a habitat area, they must now cross an intervening desert."

McCullough noted that effects on populations from global warming are easier to detect in bighorn sheep than species of other large mammals that are more uniformly distributed over the landscape. "Other large mammals may shift north more gradually as a result of global warming, but that trend is harder to detect in the short term," he said.

The authors also looked at predictions of how climate may change in the next 60 years. For scenarios that predict a minimum temperature increase of 1.3 degrees Fahrenheit, there is no significant increase in the average probability of extinction. However, in scenarios that predict a more serious temperature increase of 3.6 degrees Fahrenheit and a 12 percent decrease in precipitation, the probability of extinction increases significantly from a baseline of 20 percent to 30 percent in the next 60 years.

Epps points out that this increase is an average of the extinction probability calculated for each group remaining in southern California. The risks for some individual groups, particularly those that live at lower elevations, are significantly higher.

"Our study illustrates how sensitive certain populations can be to changes in climate, whether man-made or not," said Epps. "Cases like this give conservationists some ammunition when talking about the importance of controlling global warming."

Other co-authors of the study are John D. Wehausen of the White Mountain Research Station, Vernon C. Bleich of the California Department of Fish and Game, and Jennifer L. Rechel of the U.S. Forest Service.

Sarah Yang | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2004/02/10_sheep.shtml

More articles from Ecology, The Environment and Conservation:

nachricht Dead trees are alive with fungi
10.01.2018 | Helmholtz Centre for Environmental Research (UFZ)

nachricht Management of mountain meadows influences resilience to climate extremes
10.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>