Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

House dust mite project aims to reduce asthma

05.02.2004


A promising new way of controlling the mites that can cause asthma and other allergies is now under development.



It could lead to dramatic progress in preventing these conditions and reduce the estimated £700 million a year spent in the UK on treating them.

The technique uses a computer model to assess how modifying a domestic environment can reduce numbers of house dust mites in beds, carpets and elsewhere.


Development of the model has been led by University College London (UCL), in collaboration with Cambridge University and other partners, and with funding from the Engineering and Physical Sciences Research Council (EPSRC). A 2 year follow-up project, also funded by EPSRC, will now improve the model and test it in homes around the UK.

Although almost invisible to the naked eye, house dust mites play a major role in asthma and other allergic conditions. The original EPSRC funded project found that mite numbers are heavily influenced by environmental conditions in homes, and by the heating regime, ventilation and humidity in particular. It produced a prototype model – the most advanced of its kind – that can assess how different building features and patterns of occupant use affect these conditions, and therefore house dust mite numbers. Room conditions are important because dust mites have a unique mechanism for taking up water which involves dribbling a salt solution from under their armpits to their mouth. This mechanism enables mites to take up water from the room air. If the room conditions become dry this salt solution crystallises, the mechanism stops and hence the mites dehydrate and eventually die.

The new project represents the next step in developing the model for use in devising anti-mite strategies for a range of UK house types. It will include laboratory monitoring of mite population growth in a range of conditions, which will generate data essential to the effectiveness of the model.

To validate the model, the project will also include a field study involving 60 houses across the country. This will measure temperature and humidity in bedrooms and beds, and monitor mite populations found in the beds.

Harnessing building science and acarology (the study of mites and ticks), the initiative is being led by Professor Tadj Oreszczyn of UCL. He said, “we aim to identify how homes can be designed and used so that mite populations are reduced to below the threshold at which health problems occur”.

Jane Reck | EPSRC
Further information:
http://www.epsrc.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>