Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming may cause songbirds to avoid certain foods

27.01.2004


URI student researcher: Chickadees avoid caterpillars that eat leaves exposed to high levels of CO2



In yet another example of the far-reaching impact of global warming, a University of Rhode Island student found evidence that suggests some songbirds may avoid eating insects that consume leaves exposed to high levels of carbon dioxide.

URI senior Martina Müller of Kingston, working in cooperation with Associate Professor Scott McWilliams, Ph.D. candidate David Podlesak and colleagues at the University of Wisconsin, studied the food preferences exhibited by black-capped chickadees.


"When plants are grown in conditions of higher carbon dioxide, they produce increased levels of several secondary compounds -- tannins and phenolics -- that they use to defend against herbivory," said the 23-year-old wildlife conservation and biology major. "Those secondary compounds are absorbed by gypsy moth caterpillars that feed on the plant’s leaves, which other researchers have found reduces the caterpillar’s growth rates. We wanted to see if the chickadees can detect the secondary compounds in the caterpillars and if they have preferences for caterpillars that fed on different types of leaves."

Using chickadees captured in Kingston and acclimated for three days, Müller and McWilliams fed the birds a choice of caterpillars that were high in tannins or phenolics and other caterpillars low in those compounds.

"It was clear that the birds could tell the difference between the different caterpillars and they had strong preferences," Müller said. "They’re intelligent birds with a keen capacity to learn."

While the birds showed a distinct preference for caterpillars low in tannins and phenolics, they also showed a preference for foods they had eaten previously. "Previous experience does affect their preferences," Müller said.

So what does all this mean? According to McWilliams, it could mean a great deal in a world that is growing warmer due to increasing levels of carbon dioxide in the atmosphere. "These results provide a much more complete and realistic picture of how elevated atmospheric CO2 might affect ecological systems."

Since increased carbon dioxide leads to elevated levels of secondary compounds in plant leaves and decreased growth rates of caterpillars that eat those leaves, McWilliams said "birds that primarily eat herbivorous insects like caterpillars may find themselves without enough to eat as atmospheric CO2 levels increase. In short, chemicals in the caterpillar’s food influences the likelihood of predation by birds."

In addition, he said that if birds avoid feeding on gypsy moth caterpillars, for instance, an uncontrolled population of the caterpillars could result in more severe forest defoliation.

McWilliams also sees a connection between Müller’s results and the current mad cow disease concerns in the U.S. "We know that mad cow disease can be transmitted to humans if we eat beef from cows that have eaten feed with the disease. So to safeguard our beef, we feed cows food that does not contain the disease. Birds seem to pay attention to this same rule: know what the food you are eating has eaten, because it can affect your health. In the case of birds, however, they seem to be one step ahead of us in that they are able to detect the secondary compounds in the food and change their feeding behavior accordingly."


Funding for this research was provided by the National Science Foundation, the URI Agricultural Experiment Station, and the URI Coastal Fellows program, a unique program designed to involve undergraduate students in addressing current environmental problems. The caterpillars and aspen leaves used in the project were provided by Professor Richard Lindroth and Ph.D. candidate Jack Donaldson at the University of Wisconsin.

Todd McLeish | URI
Further information:
http://www.news.uri.edu/releases/html/04-0126-05.html

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>