Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming may cause songbirds to avoid certain foods

27.01.2004


URI student researcher: Chickadees avoid caterpillars that eat leaves exposed to high levels of CO2



In yet another example of the far-reaching impact of global warming, a University of Rhode Island student found evidence that suggests some songbirds may avoid eating insects that consume leaves exposed to high levels of carbon dioxide.

URI senior Martina Müller of Kingston, working in cooperation with Associate Professor Scott McWilliams, Ph.D. candidate David Podlesak and colleagues at the University of Wisconsin, studied the food preferences exhibited by black-capped chickadees.


"When plants are grown in conditions of higher carbon dioxide, they produce increased levels of several secondary compounds -- tannins and phenolics -- that they use to defend against herbivory," said the 23-year-old wildlife conservation and biology major. "Those secondary compounds are absorbed by gypsy moth caterpillars that feed on the plant’s leaves, which other researchers have found reduces the caterpillar’s growth rates. We wanted to see if the chickadees can detect the secondary compounds in the caterpillars and if they have preferences for caterpillars that fed on different types of leaves."

Using chickadees captured in Kingston and acclimated for three days, Müller and McWilliams fed the birds a choice of caterpillars that were high in tannins or phenolics and other caterpillars low in those compounds.

"It was clear that the birds could tell the difference between the different caterpillars and they had strong preferences," Müller said. "They’re intelligent birds with a keen capacity to learn."

While the birds showed a distinct preference for caterpillars low in tannins and phenolics, they also showed a preference for foods they had eaten previously. "Previous experience does affect their preferences," Müller said.

So what does all this mean? According to McWilliams, it could mean a great deal in a world that is growing warmer due to increasing levels of carbon dioxide in the atmosphere. "These results provide a much more complete and realistic picture of how elevated atmospheric CO2 might affect ecological systems."

Since increased carbon dioxide leads to elevated levels of secondary compounds in plant leaves and decreased growth rates of caterpillars that eat those leaves, McWilliams said "birds that primarily eat herbivorous insects like caterpillars may find themselves without enough to eat as atmospheric CO2 levels increase. In short, chemicals in the caterpillar’s food influences the likelihood of predation by birds."

In addition, he said that if birds avoid feeding on gypsy moth caterpillars, for instance, an uncontrolled population of the caterpillars could result in more severe forest defoliation.

McWilliams also sees a connection between Müller’s results and the current mad cow disease concerns in the U.S. "We know that mad cow disease can be transmitted to humans if we eat beef from cows that have eaten feed with the disease. So to safeguard our beef, we feed cows food that does not contain the disease. Birds seem to pay attention to this same rule: know what the food you are eating has eaten, because it can affect your health. In the case of birds, however, they seem to be one step ahead of us in that they are able to detect the secondary compounds in the food and change their feeding behavior accordingly."


Funding for this research was provided by the National Science Foundation, the URI Agricultural Experiment Station, and the URI Coastal Fellows program, a unique program designed to involve undergraduate students in addressing current environmental problems. The caterpillars and aspen leaves used in the project were provided by Professor Richard Lindroth and Ph.D. candidate Jack Donaldson at the University of Wisconsin.

Todd McLeish | URI
Further information:
http://www.news.uri.edu/releases/html/04-0126-05.html

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>