If we are what we eat, some lake fish are made of maple leaves

Study shown fallen leaves play a role in the food web

Aquatic plants form the base of the food web. The energy they create supports aquatic life, from invertebrates to the largest sport fish. Now, a study shows that aquatic plants are receiving a little help from trees. In a paper in this week’s issue of the journal Nature, Michael Pace and Jonathan Cole of the Institute of Ecosystem Studies in Millbrook, New York, along with colleagues from Wisconsin and Sweden, indicate that a significant part of the aquatic food chain is supported by terrestrial organic matter that originates on shore.

A building block of life, organic carbon is essential to aquatic food webs. In lakes, aquatic plants produce organic carbon by harnessing the sun’s energy (photosynthesis); some of this carbon supports the growth of fish and invertebrate populations. Scientists have long suspected that organic carbon from land is also significant to aquatic life, but the idea is difficult to demonstrate.

By tracing the fate of carbon through large-scale lake manipulations, Pace, Cole, and their colleagues have revealed that in some waters terrestrial organic carbon significantly subsidizes the aquatic food web.

“These scientists have found an ingenious method of teasing apart the carbon cycle of lakes,” says James Morris, program director in the National Science Foundation (NSF)’s division of environmental biology, which funded the research. “Their study reveals a surprising degree of dependence of lake food webs on sources of organic matter transported into the lakes from the surrounding watershed. These findings reinforce the concept that the ecology of lake ecosystems is tightly coupled with that of the surrounding terrestrial landscape.”

That maple tree leaves many eventually become perch, and that the vegetation around a water body can have profound impacts on the animal life within the body of water blur the perceived ecological boundaries between aquatic and terrestrial systems.

The impetus behind the study, which involved manipulating two Michigan lakes, was to better understand the aquatic food chain. Pace explains, “We wanted to reveal what many ecologists have long thought- aquatic life is partly dependent on organic matter produced in the watershed.” Using a chemical tracer, Pace and his colleagues set out to quantify this assumption. “The moral of the story,” Pace comments, “is, yes, fish are made from algae, but fish are also partly made from maple leaves.”

In Lakes Peter and Paul located at the University of Notre Dame Research Center, the scientists tested whether lake plant production was sufficient to support resident aquatic life.

They found that 40-55 percent of particulate carbon and 2250 percent of zooplankton (small animals that live in the water column) in the lakes are derived from terrestrial sources, which confirms that terrestrial carbon fuels aquatic production. The carbon in the zooplankton reflects their dependence on both lake plant production and terrestrial organic matter. Zooplankton are a dietary staple of many fish, especially in very young life stages.

“Our results,” notes Cole, “tell us there is not nearly enough aquatic carbon to support these animals. They are dependent on terrestrial inputs.”

Pace comments, “We now have direct experimental evidence that confirms that aquatic food chains are supported not just by the production of plants in the water but also by the production of plants on the land surrounding lakes and ponds. The leaves and organic matter that enter lakes are ultimately incorporated into aquatic animals.” These findings challenge traditional views of the aquatic food web and may help watershed managers. “Organic matter from the watershed subsidizes lake food webs, allowing more animal life in the lakes than if they were simply isolated water bodies,” Pace concludes.

###
NSF program contact: James Morris, jmorris@nsf.gov.
Media contact: Cheryl Dybas, 703-292-7734, cdybas@nsf.gov.

Media Contact

Cheryl Dybas NSF

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors