Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waste motor oil management may pose threat to health and the environment

15.01.2004


Better designed oil filters and less frequent oil changes are two ways to reduce the health and environmental threats of used motor oil, according to a new study published in the Jan. 15 issue of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.



The approximately one billion gallons of used oil generated in the United States each year comes primarily from lubricating oils — motor and transmission oils — and from hydraulic and cutting oils used in industry.

The researchers found that selling untreated used oil as an inexpensive fuel, the most common method of managing used oil in the United States, causes significant emissions of heavy metals like lead and zinc.


There are three primary ways of managing used oil: About 14 percent of old oil is re-refined; 11 percent is treated and recycled for heating fuel; and 75 percent is resold, without treatment, as fuel oil to industrial consumers. It’s the latter that presents the biggest problem, according to the authors of the new study.

"We have the oil changed in our cars, but what happens after that [oil] is out of sight and out of mind?" asks Bob Boughton, a researcher with the California Department of Toxic Substances Control and lead author of the paper. "Only 10 percent of the more than 100 million gallons of used oil generated each year in California is recycled to produce useful lubricants, just as paper is recycled to produce paper again."

Boughton, along with Arpad Horvath, Ph.D., from the University of California, Berkeley, compared the environmental impacts from each of the three ways of managing used oil, focusing on used oil data from California in 2002.

They found that, while the three ways of handling used oil were equal in their effects on ozone depletion and global warming, emissions from the untreated used oil fuel contained significantly higher levels of zinc, lead, copper and cadmium — heavy metals that can threaten both human health and the environment.

The total emission of heavy metals from used oil fuel in 2002 was potentially on the same scale as the combined emissions from all of California’s large stationary pollution sources, such as refineries and other manufacturing plants. These staggering results suggest that Californians — and others in the United States — should support recycling and re-refining programs to reduce this environmental burden, according to Boughton.

The study’s results are representative of the nation, Boughton says.

Because of its stringent air quality standards, the majority of California’s untreated used oil is sold to out-of-state and overseas customers.

In terms of total mass, zinc was by far the most abundant metal in the study, with emissions of about 136 metric tons from California’s used oil in 2002. Copper and lead weighed in at 6.5 and 5.2 metric tons respectively.

But total mass alone does not address the potential threat to human health or the environment, so the researchers used a weighting method to compare the impacts. Each metal was assigned a value for its potential toxicity to both humans and terrestrial ecosystems, based on its known behavior in the environment. Compared to lead, for example, zinc is more toxic to wildlife and ecosystems, but much less toxic to humans.

After adjusting for each metal’s relative toxicity and adding the results together, the researchers compared the effects of untreated used oil as fuel to both re-refining and distillation. In both comparisons, the toxicity potential of untreated oil was 150 times greater for terrestrial ecosystems, and more than five times greater for humans. Zinc and cadmium posed the greatest threat to ecosystems; lead and chromium drove the human health effects.

The results provide further incentive for citizens and policymakers to encourage alternative used oil management strategies, possibly through incentives for treatment and by supporting markets for processed oil products, according to Boughton. But he is quick to point out what he considers the best option of all: use less oil in the first place.

One way to accomplish this would be extending oil change intervals from the national average 4,500 miles to more than 9,000 miles. "The bottom line is that motor oil quality has continually improved, but the oil filters have stayed basically the same for the last 30 years," Boughton says. Most filters are made of a paper element that gets clogged after 5,000 miles, so the oil needs to be changed simply because it gets dirty. Yet high efficiency filters exist now and are available to the public. "If the auto manufacturers put these on new cars and called for these at each oil change, the used oil volume could be reduced by half from the transportation sector," Boughton says.


The online version of the research paper cited above was initially published Dec. 12 on the journal’s Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>