Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Farmed salmon more toxic than wild salmon, study finds

09.01.2004


Eating salmon may pose health risks



A study of more than two metric tons of North American, South American and European salmon has shown that PCBs and other environmental toxins are present at higher levels in farm-raised salmon than in their wild counterparts.

Researchers at Indiana University and five other research centers say increased toxin levels in farm-raised salmon may pose health risks to people who eat the economically important fish. Their study, which appears in this week’s (Jan. 9) Science, is the most comprehensive analysis to date of salmon toxin concentrations.


"We think it’s important for people who eat salmon to know that farmed salmon have higher levels of toxins than wild salmon from the open ocean," said IU School of Public and Environmental Affairs Distinguished Professor Ronald Hites, who led the study.

The researchers applied U.S. Environmental Protection Agency fish consumption advisory methods to determine consumption recommendations. Farmed salmon purchased for the study from supermarkets in Frankfurt, Edinburgh, Paris, London, Oslo, Boston, San Francisco, and Toronto triggered consumption recommendations of one-half to one meal of salmon per month. (A meal is defined as 8 oz. of uncooked meat.) Farmed salmon from supermarkets in Los Angeles, Washington, D.C., Seattle, Chicago, New York and Vancouver triggered a recommendation of no more than two salmon meals per month. Farmed salmon from Denver and New Orleans supermarkets both triggered a consumption recommendation of two meals of salmon per month. With very few exceptions, farmed salmon samples tested significantly exceeded the containment levels of wild salmon, which could be consumed at levels as high as eight meals per month.

The production of farmed salmon has increased 40-fold over the last two decades, thanks in large part to the world’s salmon farms. Over half the salmon sold globally are raised in Northern Europe, Chile and North America.

While the health benefits of eating salmon have been established by numerous studies, concerns about the fish’s tendency to accumulate toxins have gone largely unaddressed. As fish eaters themselves, salmon occupy fairly high positions in their food chains. As a general rule, carnivorous animals tend to have higher concentrations of toxins in their bodies than herbivores.

To test this ecological principle, Hites and his colleagues measured organochlorine toxin levels in about 700 farmed and wild salmon. Farm-raised Atlantic salmon were purchased from retailers in London (U.K.), Frankfurt (Germany), Edinburgh (Scotland), Oslo (Norway), Paris (France), Toronto, Vancouver, Boston, Chicago, Denver, Los Angeles, New Orleans, New York, San Francisco, Seattle and Washington, D.C., and from wholesalers in North America, Chile and Europe.

For comparison, the researchers collected samples of five wild Pacific salmon species -- Chinook, Coho, chum, pink and sockeye -- from three different regions in North America. The researchers did not study farmed Pacific salmon or wild Atlantic salmon because fish from the two groups are difficult to obtain.

The researchers analyzed the concentrations of 14 organochlorine toxins in salmon from each collection site, using gas chromatographic high-resolution spectrometry. The toxins they studied were polychlorinated biphenyls (PCBs), dioxins, toxaphene, dieldrin, hexachlorobenzene (HCB), lindane, heptachlor epoxide, cis-nonachlor, trans-nonachlor, gamma-chlordane, alpha-chlordane, Mirex, endrin and total DDT. Many of these toxins, including PCBs, dioxins and toxaphene, are each "reasonably anticipated to be a human carcinogen," according to a recent report by the U.S. Department of Health and Human Services.

When samples from all over the world were grouped, the researchers found farm-raised Atlantic salmon had significantly higher levels of 13 toxins when compared with wild Pacific salmon. Breaking it down by region, the researchers found levels of all 14 toxins were significantly elevated in both European and North American farm-raised salmon when compared with wild Pacific salmon. Levels of only 6 toxins were significantly elevated in South American farm-raised salmon. Levels of two toxins (HCB and lindane) were actually significantly lower in farm-raised South American salmon than in wild salmon species.

Only PCBs, dioxins, dieldrin and toxaphene were used to calculate consumption safety guidelines, because the researchers deemed these four toxins to most strongly impact human health.

The researchers also found toxin levels in European farm-raised salmon were significantly higher than in North American or South American farm-raised salmon. Levels of PCBs, dioxins, toxaphene and dieldrin were highest in farmed salmon from Scotland and the Faroe Islands (Denmark) and lowest in farmed salmon from Chile and Washington state, though Hites pointed out that even these comparatively uncontaminated South American salmon had high levels of other toxins.

Hites and his colleagues also measured toxin levels in "salmon chow," a mixture of ground-up fish and oil fed to farm-raised salmon. They found a strong correlation between the toxicities of chow and salmon, suggesting toxins are passed into the salmon from their feed.

Jeffrey Foran (University of Michigan), David Carpenter (University at Albany), M. Coreen Hamilton (AXYS Analytical Services Ltd.), Barbara Knuth and Steven Schwager (Cornell University), and Amy Matthews Amos (Turnstone Consulting, in West Virginia) also contributed to the study. It was funded by a grant to the University at Albany from the Pew Charitable Trusts’ Environmental Division.


To speak with Hites, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>