Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Farmed salmon more toxic than wild salmon, study finds

09.01.2004


Eating salmon may pose health risks



A study of more than two metric tons of North American, South American and European salmon has shown that PCBs and other environmental toxins are present at higher levels in farm-raised salmon than in their wild counterparts.

Researchers at Indiana University and five other research centers say increased toxin levels in farm-raised salmon may pose health risks to people who eat the economically important fish. Their study, which appears in this week’s (Jan. 9) Science, is the most comprehensive analysis to date of salmon toxin concentrations.


"We think it’s important for people who eat salmon to know that farmed salmon have higher levels of toxins than wild salmon from the open ocean," said IU School of Public and Environmental Affairs Distinguished Professor Ronald Hites, who led the study.

The researchers applied U.S. Environmental Protection Agency fish consumption advisory methods to determine consumption recommendations. Farmed salmon purchased for the study from supermarkets in Frankfurt, Edinburgh, Paris, London, Oslo, Boston, San Francisco, and Toronto triggered consumption recommendations of one-half to one meal of salmon per month. (A meal is defined as 8 oz. of uncooked meat.) Farmed salmon from supermarkets in Los Angeles, Washington, D.C., Seattle, Chicago, New York and Vancouver triggered a recommendation of no more than two salmon meals per month. Farmed salmon from Denver and New Orleans supermarkets both triggered a consumption recommendation of two meals of salmon per month. With very few exceptions, farmed salmon samples tested significantly exceeded the containment levels of wild salmon, which could be consumed at levels as high as eight meals per month.

The production of farmed salmon has increased 40-fold over the last two decades, thanks in large part to the world’s salmon farms. Over half the salmon sold globally are raised in Northern Europe, Chile and North America.

While the health benefits of eating salmon have been established by numerous studies, concerns about the fish’s tendency to accumulate toxins have gone largely unaddressed. As fish eaters themselves, salmon occupy fairly high positions in their food chains. As a general rule, carnivorous animals tend to have higher concentrations of toxins in their bodies than herbivores.

To test this ecological principle, Hites and his colleagues measured organochlorine toxin levels in about 700 farmed and wild salmon. Farm-raised Atlantic salmon were purchased from retailers in London (U.K.), Frankfurt (Germany), Edinburgh (Scotland), Oslo (Norway), Paris (France), Toronto, Vancouver, Boston, Chicago, Denver, Los Angeles, New Orleans, New York, San Francisco, Seattle and Washington, D.C., and from wholesalers in North America, Chile and Europe.

For comparison, the researchers collected samples of five wild Pacific salmon species -- Chinook, Coho, chum, pink and sockeye -- from three different regions in North America. The researchers did not study farmed Pacific salmon or wild Atlantic salmon because fish from the two groups are difficult to obtain.

The researchers analyzed the concentrations of 14 organochlorine toxins in salmon from each collection site, using gas chromatographic high-resolution spectrometry. The toxins they studied were polychlorinated biphenyls (PCBs), dioxins, toxaphene, dieldrin, hexachlorobenzene (HCB), lindane, heptachlor epoxide, cis-nonachlor, trans-nonachlor, gamma-chlordane, alpha-chlordane, Mirex, endrin and total DDT. Many of these toxins, including PCBs, dioxins and toxaphene, are each "reasonably anticipated to be a human carcinogen," according to a recent report by the U.S. Department of Health and Human Services.

When samples from all over the world were grouped, the researchers found farm-raised Atlantic salmon had significantly higher levels of 13 toxins when compared with wild Pacific salmon. Breaking it down by region, the researchers found levels of all 14 toxins were significantly elevated in both European and North American farm-raised salmon when compared with wild Pacific salmon. Levels of only 6 toxins were significantly elevated in South American farm-raised salmon. Levels of two toxins (HCB and lindane) were actually significantly lower in farm-raised South American salmon than in wild salmon species.

Only PCBs, dioxins, dieldrin and toxaphene were used to calculate consumption safety guidelines, because the researchers deemed these four toxins to most strongly impact human health.

The researchers also found toxin levels in European farm-raised salmon were significantly higher than in North American or South American farm-raised salmon. Levels of PCBs, dioxins, toxaphene and dieldrin were highest in farmed salmon from Scotland and the Faroe Islands (Denmark) and lowest in farmed salmon from Chile and Washington state, though Hites pointed out that even these comparatively uncontaminated South American salmon had high levels of other toxins.

Hites and his colleagues also measured toxin levels in "salmon chow," a mixture of ground-up fish and oil fed to farm-raised salmon. They found a strong correlation between the toxicities of chow and salmon, suggesting toxins are passed into the salmon from their feed.

Jeffrey Foran (University of Michigan), David Carpenter (University at Albany), M. Coreen Hamilton (AXYS Analytical Services Ltd.), Barbara Knuth and Steven Schwager (Cornell University), and Amy Matthews Amos (Turnstone Consulting, in West Virginia) also contributed to the study. It was funded by a grant to the University at Albany from the Pew Charitable Trusts’ Environmental Division.


To speak with Hites, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>