Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering a healthier, cleaner future

09.01.2004


Researchers at Queen’s University Belfast will be helping to develop the automotive engines of the future, thanks to a new £1 million facility which opens on Friday.



Work in the Engine Test Laboratories will include developing and improving engines for better fuel economy and reducing harmful exhaust emissions which contribute to global warming.

The new facility is part of the University’s world class Virtual Engineering Centre (VEC), which carries out cutting edge research focusing on solving design problems and testing new products in a virtual environment. Powerful computers and the latest imaging and sensing technologies allow researchers to study complex systems using a range of senses, including touch and smell.


Opened last year, the pioneering centre conducts multi-disciplinary research on the computer simulation of complex engineering system, including internal combustion engines.

Engine research at Queen’s has focused on advanced engine modelling, engine development and research into automotive catalysts, with researchers developing strong industrial links and partnerships with major engine and automotive companies around the world.

State-of-the-art equipment in the new labs will also enable researchers to test engines under typical city driving conditions – something they haven’t been able to do before.

Professor Robert Fleck, head of the Internal Combustion Engines Research at Queen’s said: “These top class facilities will enable us to interact with the automotive industry at the highest level. It will allow us to be at the forefront of engine technology in the drive for reduced exhaust emissions and improved fuel economy. They will also help to maintain the reputation of Queen’s as a world class centre for engine research.”

The new research facility will be officially opened by Queen’s graduate Detroit-based Dr Gary Smyth, who is Engineering Director of Advanced Engineering for General Motors Powertrain, a global producer of engines, transmissions, castings and components for GM vehicles, including Vauxhall and Opel. It is responsible for the manufacture of over 43,000 engines and transmissions per day.

A native of Londonderry, Dr Smyth began his career with GM in 1989 as a senior project engineer with GM Advanced Product Engineering in Michigan. He has held numerous positions in the Advanced Powertrain organisation and took up his current post in 1999.

A former student of Foyle and Londonderry College, he studied mechanical engineering at Queen’s where he completed his PhD in 1989. Married with two children, his wife, Dr Susan Smyth (nee McCann) is a fellow graduate of Queen’s and a fellow executive at General Motors.

The new facility received most of its funding under the SPUR programme (Support Programme for University Research). Additional funding was obtained from the Engineering and Physical Sciences Research Council (EPSRC) and industrial sources including Optimum Power Technology (Pittsburgh), Horiba (Japan) and Ricardo Test Automation (UK).

Later in the afternoon Professor Roy Douglas, who is chair of IC Engines Technology and is currently on secondment to GM Motors in Detroit, will present his inaugural lecture entitled “Aftertreatment: A Catalyst for Environmental Progress” in the Ashby building.

Elaine Fitzsimons | alfa
Further information:
http://www.qub.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>