Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering a healthier, cleaner future

09.01.2004


Researchers at Queen’s University Belfast will be helping to develop the automotive engines of the future, thanks to a new £1 million facility which opens on Friday.



Work in the Engine Test Laboratories will include developing and improving engines for better fuel economy and reducing harmful exhaust emissions which contribute to global warming.

The new facility is part of the University’s world class Virtual Engineering Centre (VEC), which carries out cutting edge research focusing on solving design problems and testing new products in a virtual environment. Powerful computers and the latest imaging and sensing technologies allow researchers to study complex systems using a range of senses, including touch and smell.


Opened last year, the pioneering centre conducts multi-disciplinary research on the computer simulation of complex engineering system, including internal combustion engines.

Engine research at Queen’s has focused on advanced engine modelling, engine development and research into automotive catalysts, with researchers developing strong industrial links and partnerships with major engine and automotive companies around the world.

State-of-the-art equipment in the new labs will also enable researchers to test engines under typical city driving conditions – something they haven’t been able to do before.

Professor Robert Fleck, head of the Internal Combustion Engines Research at Queen’s said: “These top class facilities will enable us to interact with the automotive industry at the highest level. It will allow us to be at the forefront of engine technology in the drive for reduced exhaust emissions and improved fuel economy. They will also help to maintain the reputation of Queen’s as a world class centre for engine research.”

The new research facility will be officially opened by Queen’s graduate Detroit-based Dr Gary Smyth, who is Engineering Director of Advanced Engineering for General Motors Powertrain, a global producer of engines, transmissions, castings and components for GM vehicles, including Vauxhall and Opel. It is responsible for the manufacture of over 43,000 engines and transmissions per day.

A native of Londonderry, Dr Smyth began his career with GM in 1989 as a senior project engineer with GM Advanced Product Engineering in Michigan. He has held numerous positions in the Advanced Powertrain organisation and took up his current post in 1999.

A former student of Foyle and Londonderry College, he studied mechanical engineering at Queen’s where he completed his PhD in 1989. Married with two children, his wife, Dr Susan Smyth (nee McCann) is a fellow graduate of Queen’s and a fellow executive at General Motors.

The new facility received most of its funding under the SPUR programme (Support Programme for University Research). Additional funding was obtained from the Engineering and Physical Sciences Research Council (EPSRC) and industrial sources including Optimum Power Technology (Pittsburgh), Horiba (Japan) and Ricardo Test Automation (UK).

Later in the afternoon Professor Roy Douglas, who is chair of IC Engines Technology and is currently on secondment to GM Motors in Detroit, will present his inaugural lecture entitled “Aftertreatment: A Catalyst for Environmental Progress” in the Ashby building.

Elaine Fitzsimons | alfa
Further information:
http://www.qub.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>