Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MTBE alternatives could pose similar environmental threat

06.01.2004


Designing underground fuel tanks that don’t leak rather than replacing MTBE with alternative fuel additives could be a better way to prevent groundwater contamination, according to new research that will appear in the Jan. 1 issue of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.



The study, which involved more than 850 leaking underground fuel tanks in the Los Angeles area, suggests that expanded use of MTBE alternatives may pose as much of an environmental threat as their predecessor. The solution, the researchers say, is to stop the leaks before they start by designing better storage tanks.

Bans on the use of MTBE are scheduled to go into effect Jan. 1 in California, Connecticut and New York. Seventeen other states, as well as Chicago, Ill., and Reno, Nev., are considering restrictions or bans on MTBE, citing concerns that it can leak from gasoline storage tanks and contaminate drinking water supplies.


In the greater Los Angeles area there are more than 1,100 gas stations with leaking underground fuel tanks, according to the report. The researchers analyzed data from groundwater samples taken at 868 of these facilities, measuring the concentration of each oxygenate, such as MTBE, and examining the "plume length" — the distance that leakage travels. Chemicals diffuse at different rates through soil, so knowing the distance traveled gives an indication of the potential threat to drinking water supplies.

The 1990 Clean Air Act Amendments require that gasoline formulations contain oxygen to help them burn more completely, reducing harmful tailpipe emissions of ozone, a major component of smog. Methyl tertiary-butyl ether (MTBE) is an oxygenate commonly added to gasoline to meet the federal standards.

"Several other fuel oxygenates with similar properties are present in formulations supplied to gasoline stations," says Tom Shih, D. Env. (doctorate in environmental science and engineering), an environmental scientist with the California Environmental Protection Agency. "However, unlike MTBE, there is virtually no research on the environmental behavior of these alternative fuel oxygenates."

Without a better understanding of these chemicals, there is a risk of repeating the MTBE problem, he says.

Shih and his colleagues at the EPA and the University of California, Los Angeles, investigated the extent of groundwater contamination beneath gas stations, automotive shops and other sites with leaking underground fuel tanks in the Los Angeles area. The study focused on MTBE and four other additives with similar properties: tertiary-butyl alcohol (TBA), tertiary amyl-methyl ether (TAME), diisopropyl ether (DIPE), and ethyl tertiary-butyl ether (ETBE).

"Except for ethanol, these oxygenates constitute the majority of the fuel oxygenates used in the United States," Shih says.

As the researchers expected, MTBE was the most common contaminant; it was detected at 82.5 percent of the sites. TBA was a close second at 61.1 percent, while the other three oxygenates were all detected at frequencies below 25 percent.

Combined with the data on plume lengths, the results indicate that TBA contamination is occurring at a scale similar to MTBE. And while the other compounds don’t appear to pose a serious risk at the moment, their low occurrence rates could be a reflection of less-frequent use. "All indications suggest that the alternative oxygenates would pose groundwater contamination threats similar to MTBE if their scales of usage were expanded," the researchers conclude.

The implication, according to Shih, is that replacing MTBE with other oxygenates could lead to a replay of the current problem with a different contaminant.

Some have proposed using ethanol as a substitute for MTBE. "Early indications suggest that ethanol may pose less of a threat to groundwater and drinking water resources," Shih says. But ethanol has a number of drawbacks: it is more expensive and scarce; it doesn’t offer the same air quality benefits; it can’t be mixed with gasoline and transported long distances; and the use of ethanol could cause a significant increase in the release of the respiratory irritant acetaldehyde, according to Shih.

The solution, Shih says, is to stop the leaks before they start: "Clearly it is more costly to have a leak occur and remediate the environmental impact than to prevent the release in the first place." The average cost of site investigation and cleanup ranges from $100,000 to $1 million. "With proper design, it is entirely possible to have underground fuel tanks that don’t leak," Shih says.

The high number of leaking tanks just in the Los Angeles area hints at the size of the problem nationwide, according to Shih. He also says the leakage frequently occurs even at sites with upgraded double tanks. Shih advocates a complete redesign of the system, which would include more effective management and enforcement as well as high-tech leak detection techniques.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>