Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MTBE alternatives could pose similar environmental threat

06.01.2004


Designing underground fuel tanks that don’t leak rather than replacing MTBE with alternative fuel additives could be a better way to prevent groundwater contamination, according to new research that will appear in the Jan. 1 issue of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.



The study, which involved more than 850 leaking underground fuel tanks in the Los Angeles area, suggests that expanded use of MTBE alternatives may pose as much of an environmental threat as their predecessor. The solution, the researchers say, is to stop the leaks before they start by designing better storage tanks.

Bans on the use of MTBE are scheduled to go into effect Jan. 1 in California, Connecticut and New York. Seventeen other states, as well as Chicago, Ill., and Reno, Nev., are considering restrictions or bans on MTBE, citing concerns that it can leak from gasoline storage tanks and contaminate drinking water supplies.


In the greater Los Angeles area there are more than 1,100 gas stations with leaking underground fuel tanks, according to the report. The researchers analyzed data from groundwater samples taken at 868 of these facilities, measuring the concentration of each oxygenate, such as MTBE, and examining the "plume length" — the distance that leakage travels. Chemicals diffuse at different rates through soil, so knowing the distance traveled gives an indication of the potential threat to drinking water supplies.

The 1990 Clean Air Act Amendments require that gasoline formulations contain oxygen to help them burn more completely, reducing harmful tailpipe emissions of ozone, a major component of smog. Methyl tertiary-butyl ether (MTBE) is an oxygenate commonly added to gasoline to meet the federal standards.

"Several other fuel oxygenates with similar properties are present in formulations supplied to gasoline stations," says Tom Shih, D. Env. (doctorate in environmental science and engineering), an environmental scientist with the California Environmental Protection Agency. "However, unlike MTBE, there is virtually no research on the environmental behavior of these alternative fuel oxygenates."

Without a better understanding of these chemicals, there is a risk of repeating the MTBE problem, he says.

Shih and his colleagues at the EPA and the University of California, Los Angeles, investigated the extent of groundwater contamination beneath gas stations, automotive shops and other sites with leaking underground fuel tanks in the Los Angeles area. The study focused on MTBE and four other additives with similar properties: tertiary-butyl alcohol (TBA), tertiary amyl-methyl ether (TAME), diisopropyl ether (DIPE), and ethyl tertiary-butyl ether (ETBE).

"Except for ethanol, these oxygenates constitute the majority of the fuel oxygenates used in the United States," Shih says.

As the researchers expected, MTBE was the most common contaminant; it was detected at 82.5 percent of the sites. TBA was a close second at 61.1 percent, while the other three oxygenates were all detected at frequencies below 25 percent.

Combined with the data on plume lengths, the results indicate that TBA contamination is occurring at a scale similar to MTBE. And while the other compounds don’t appear to pose a serious risk at the moment, their low occurrence rates could be a reflection of less-frequent use. "All indications suggest that the alternative oxygenates would pose groundwater contamination threats similar to MTBE if their scales of usage were expanded," the researchers conclude.

The implication, according to Shih, is that replacing MTBE with other oxygenates could lead to a replay of the current problem with a different contaminant.

Some have proposed using ethanol as a substitute for MTBE. "Early indications suggest that ethanol may pose less of a threat to groundwater and drinking water resources," Shih says. But ethanol has a number of drawbacks: it is more expensive and scarce; it doesn’t offer the same air quality benefits; it can’t be mixed with gasoline and transported long distances; and the use of ethanol could cause a significant increase in the release of the respiratory irritant acetaldehyde, according to Shih.

The solution, Shih says, is to stop the leaks before they start: "Clearly it is more costly to have a leak occur and remediate the environmental impact than to prevent the release in the first place." The average cost of site investigation and cleanup ranges from $100,000 to $1 million. "With proper design, it is entirely possible to have underground fuel tanks that don’t leak," Shih says.

The high number of leaking tanks just in the Los Angeles area hints at the size of the problem nationwide, according to Shih. He also says the leakage frequently occurs even at sites with upgraded double tanks. Shih advocates a complete redesign of the system, which would include more effective management and enforcement as well as high-tech leak detection techniques.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>