Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American black cherry tree overruns Europe by playing dirty

10.12.2003


The invasion of Europe by an American cherry tree is helped along by Europeans’ own dirt, according to a new study by scientists at Indiana University Bloomington and the Centre for Terrestrial Ecology in the Netherlands.



Their report, in the December issue of Ecology Letters, suggests it’s what’s in European soils -- or more specifically, what isn’t in them -- that makes it possible for the American black cherry tree to have invaded the continent.

"We’re seeing a definite positive effect of European soil on black cherry’s growth," said IU biologist Kurt Reinhart, who led the study. "Back in its native range, however, there appears to be something in the soil that prevents the tree from growing easily."


Reinhart’s study suggests that in Europe, the invasion of black cherry (Prunus serotina) may actually be helped along by local soil microbes. The study corroborates earlier research showing that American soil microbes inhibit the trees’ growth. Pythium, a fungus that causes "damping-off disease" in young trees, is one known genus of black cherry pathogens in the American Midwest.

Black cherry trees, which produce a fruit more often consumed by birds and other wildlife than by humans, have proliferated to such an extent overseas that some concerned Europeans are taking matters into their own hands.

"In parts of Europe, like the Netherlands, Belgium and Germany, the tree is considered quite a pest," said IU biologist Keith Clay, a coauthor of the report. "We are told some Dutch school children are going out on field trips into the woods to pull the tree seedlings and saplings out."

The research team examined the distribution of black cherry trees in four locations -- the Indiana University Research and Teaching Preserve and Griffy Lake Nature Preserve in Bloomington, Ind., and De Ossenbos and De Leeren Doedel in The Netherlands. The scientists also conducted experiments in American and Dutch greenhouses to assess soil properties from the two countries’ study sites. In some pots, soil was sterilized with heat. Black cherry seedlings were grown for two months.

The researchers found that black cherry is sparsely distributed across Indiana forests, but the trees were found in dense clumps in Dutch forests. In the greenhouse experiments, Reinhart and his colleagues found native black cherry grew poorly in non-sterilized soil but grew comparatively well in sterilized soil. Black cherry grew more poorly in sterilized Dutch soil, however, suggesting microbes in the European soil may actually help the cherry seedlings grow.

Reinhart and his colleagues concluded there are pathogens in American soils that inhibit the growth of the trees, and without the pathogens, black cherry prospers. The fact that invader trees do well in Dutch soil, whether or not that soil is sterilized, supports a popular hypothesis that plant species do well in non-native habitats because they are able to escape pathogens, herbivores and competitors that stymie their growth.

Alissa Packer (IUB) and Wim Van der Putten (Centre for Terrestrial Ecology) also contributed to the report. It was funded by the University of Montana’s University Research Grant Program and by National Science Foundation grant DEB-0090056.

David Bricker | Indiana University
Further information:
http://newsinfo.iu.edu/news/page/normal/1202.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>