Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American black cherry tree overruns Europe by playing dirty

10.12.2003


The invasion of Europe by an American cherry tree is helped along by Europeans’ own dirt, according to a new study by scientists at Indiana University Bloomington and the Centre for Terrestrial Ecology in the Netherlands.



Their report, in the December issue of Ecology Letters, suggests it’s what’s in European soils -- or more specifically, what isn’t in them -- that makes it possible for the American black cherry tree to have invaded the continent.

"We’re seeing a definite positive effect of European soil on black cherry’s growth," said IU biologist Kurt Reinhart, who led the study. "Back in its native range, however, there appears to be something in the soil that prevents the tree from growing easily."


Reinhart’s study suggests that in Europe, the invasion of black cherry (Prunus serotina) may actually be helped along by local soil microbes. The study corroborates earlier research showing that American soil microbes inhibit the trees’ growth. Pythium, a fungus that causes "damping-off disease" in young trees, is one known genus of black cherry pathogens in the American Midwest.

Black cherry trees, which produce a fruit more often consumed by birds and other wildlife than by humans, have proliferated to such an extent overseas that some concerned Europeans are taking matters into their own hands.

"In parts of Europe, like the Netherlands, Belgium and Germany, the tree is considered quite a pest," said IU biologist Keith Clay, a coauthor of the report. "We are told some Dutch school children are going out on field trips into the woods to pull the tree seedlings and saplings out."

The research team examined the distribution of black cherry trees in four locations -- the Indiana University Research and Teaching Preserve and Griffy Lake Nature Preserve in Bloomington, Ind., and De Ossenbos and De Leeren Doedel in The Netherlands. The scientists also conducted experiments in American and Dutch greenhouses to assess soil properties from the two countries’ study sites. In some pots, soil was sterilized with heat. Black cherry seedlings were grown for two months.

The researchers found that black cherry is sparsely distributed across Indiana forests, but the trees were found in dense clumps in Dutch forests. In the greenhouse experiments, Reinhart and his colleagues found native black cherry grew poorly in non-sterilized soil but grew comparatively well in sterilized soil. Black cherry grew more poorly in sterilized Dutch soil, however, suggesting microbes in the European soil may actually help the cherry seedlings grow.

Reinhart and his colleagues concluded there are pathogens in American soils that inhibit the growth of the trees, and without the pathogens, black cherry prospers. The fact that invader trees do well in Dutch soil, whether or not that soil is sterilized, supports a popular hypothesis that plant species do well in non-native habitats because they are able to escape pathogens, herbivores and competitors that stymie their growth.

Alissa Packer (IUB) and Wim Van der Putten (Centre for Terrestrial Ecology) also contributed to the report. It was funded by the University of Montana’s University Research Grant Program and by National Science Foundation grant DEB-0090056.

David Bricker | Indiana University
Further information:
http://newsinfo.iu.edu/news/page/normal/1202.html

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>