Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

American black cherry tree overruns Europe by playing dirty

10.12.2003


The invasion of Europe by an American cherry tree is helped along by Europeans’ own dirt, according to a new study by scientists at Indiana University Bloomington and the Centre for Terrestrial Ecology in the Netherlands.



Their report, in the December issue of Ecology Letters, suggests it’s what’s in European soils -- or more specifically, what isn’t in them -- that makes it possible for the American black cherry tree to have invaded the continent.

"We’re seeing a definite positive effect of European soil on black cherry’s growth," said IU biologist Kurt Reinhart, who led the study. "Back in its native range, however, there appears to be something in the soil that prevents the tree from growing easily."


Reinhart’s study suggests that in Europe, the invasion of black cherry (Prunus serotina) may actually be helped along by local soil microbes. The study corroborates earlier research showing that American soil microbes inhibit the trees’ growth. Pythium, a fungus that causes "damping-off disease" in young trees, is one known genus of black cherry pathogens in the American Midwest.

Black cherry trees, which produce a fruit more often consumed by birds and other wildlife than by humans, have proliferated to such an extent overseas that some concerned Europeans are taking matters into their own hands.

"In parts of Europe, like the Netherlands, Belgium and Germany, the tree is considered quite a pest," said IU biologist Keith Clay, a coauthor of the report. "We are told some Dutch school children are going out on field trips into the woods to pull the tree seedlings and saplings out."

The research team examined the distribution of black cherry trees in four locations -- the Indiana University Research and Teaching Preserve and Griffy Lake Nature Preserve in Bloomington, Ind., and De Ossenbos and De Leeren Doedel in The Netherlands. The scientists also conducted experiments in American and Dutch greenhouses to assess soil properties from the two countries’ study sites. In some pots, soil was sterilized with heat. Black cherry seedlings were grown for two months.

The researchers found that black cherry is sparsely distributed across Indiana forests, but the trees were found in dense clumps in Dutch forests. In the greenhouse experiments, Reinhart and his colleagues found native black cherry grew poorly in non-sterilized soil but grew comparatively well in sterilized soil. Black cherry grew more poorly in sterilized Dutch soil, however, suggesting microbes in the European soil may actually help the cherry seedlings grow.

Reinhart and his colleagues concluded there are pathogens in American soils that inhibit the growth of the trees, and without the pathogens, black cherry prospers. The fact that invader trees do well in Dutch soil, whether or not that soil is sterilized, supports a popular hypothesis that plant species do well in non-native habitats because they are able to escape pathogens, herbivores and competitors that stymie their growth.

Alissa Packer (IUB) and Wim Van der Putten (Centre for Terrestrial Ecology) also contributed to the report. It was funded by the University of Montana’s University Research Grant Program and by National Science Foundation grant DEB-0090056.

David Bricker | Indiana University
Further information:
http://newsinfo.iu.edu/news/page/normal/1202.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>