Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study sheds new light on island evolution

04.12.2003


Ryan Calsbeek

Credit: UCLA


A lizard seen through the underside of a leaf

Credit: Ryan Calsbeek, UCLA


Evolution of genetically distinct species that live exclusively on land can be slowed by over-water dispersal following tropical storms, according to a UCLA study that suggests classic theories of island evolution need an overhaul.

In an article published Thursday, Dec. 4, in the journal Nature, postdoctoral fellow Ryan Calsbeek and Professor Thomas B. Smith of the UCLA Center for Tropical Research report that lizards long thought to be evolving independently on Caribbean Islands in fact exchange genetic material. The reason, according to their 12-month study: Hurricanes and lesser storms wash the lizards into prevailing ocean currents, which carry them from island to island.

"The lizards are being prevented from evolving as quickly as they otherwise would have," said Calsbeek, the study’s lead researcher. "We can no longer just assume that certain populations evolved independently on separate islands."



The study questions the widely held view that vast numbers of species of plants and animals on Caribbean, Hawaiian and Galapagos islands evolved separately in isolated microcosms of evolution. As a result, the research sheds new light on the mechanisms of evolution of animals in island habitats and their ability to adapt in the future.

Smith, an evolutionary biologist and director of the Center for Tropical Research at the UCLA Institute of the Environment, explained that the exchange of genes among adjacent islands over time can slow evolution and the ability of animals to adapt to their surroundings. "When islands evolve independently, they maintain their own identity," Smith said. "When they begin sharing genetic material, their uniqueness begins to disappear, and the process of evolution slows."

Calsbeek and Smith focused the study on Anolis lizards, a genus of lizards long considered a classic example of adaptive radiation -- the process whereby a single lineage rapidly evolves into many species that are adapted to specific habitats. In the case of Anolis lizards, all species share a single ancestor from South America, and changes in body proportions have occurred based on habitat use; species found on the broad trunks of mature trees have longer legs than those found in shrubbery with narrower branches. Anolis lizards, typically 55–65 millimeters in length, are characterized by a colorful throat fan used in signaling other lizards, and a distinctive black, gray and white back pattern.

Calsbeek and Smith captured approximately 50 Anolis lizards from each of five Caribbean islands in June and July of 2002. The researchers weighed and measured each lizard, and removed a tiny tissue sample from each lizard’s regenerative tail to use in DNA analysis. Working in the lab over the following 10 months, they created a genetic profile for each lizard. Given the numbers and frequencies of physical and genetic differences among lizard populations, they determined that lizards were moving between islands.

Next, the researchers sought to explain this unusual flow of genetic material between islands. Smith said they were "stunned to find an exact match between the gene flow and ocean currents, even in exceptional cases where prevailing currents are not in the expected direction."

Calsbeek said that ocean currents are the most plausible explanation for the gene flow between islands, more likely than human transportation, land-bridges that connected islands more than 10,000 years ago or island colonization by the lizards’ Cuban ancestors.

"It’s quite amazing to think that weather patterns can affect the evolution of island lizards, but the patterns of dispersal match up so well with the direction of ocean currents that the conclusion is almost unavoidable," Calsbeek said. "Whether similar processes are important for other island groups is a question that needs further investigation, but the lizards have opened the door to new ideas about evolution on islands."

Previous research has demonstrated clearly that hurricanes can carry animals vast distances. But not until the UCLA study had research provided evidence that over-water dispersal can affect the evolution of individual genes.


Note to Editors: Digital images are available upon request.

The UCLA Institute of the Environment (www.ioe.ucla.edu/) is dedicated to interdisciplinary research to help produce solutions to complex issues related to the environment. The faculty -- representing a broad range of disciplines, including the sciences, public policy, engineering, law, business, public health -- works together to educate the next generation of professionals, leaders and citizens committed to the health of our planet. The institute includes four centers, including the Coastal Marine Center, the Center for Air Pollution and Exposure, the Center for Tropical Research, and the Center for Urban Sustainability and Predictability.

Phil Hampton | EurekAlert!
Further information:
http://www.ucla.edu/
http://www.ioe.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>