Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study sheds new light on island evolution

04.12.2003


Ryan Calsbeek

Credit: UCLA


A lizard seen through the underside of a leaf

Credit: Ryan Calsbeek, UCLA


Evolution of genetically distinct species that live exclusively on land can be slowed by over-water dispersal following tropical storms, according to a UCLA study that suggests classic theories of island evolution need an overhaul.

In an article published Thursday, Dec. 4, in the journal Nature, postdoctoral fellow Ryan Calsbeek and Professor Thomas B. Smith of the UCLA Center for Tropical Research report that lizards long thought to be evolving independently on Caribbean Islands in fact exchange genetic material. The reason, according to their 12-month study: Hurricanes and lesser storms wash the lizards into prevailing ocean currents, which carry them from island to island.

"The lizards are being prevented from evolving as quickly as they otherwise would have," said Calsbeek, the study’s lead researcher. "We can no longer just assume that certain populations evolved independently on separate islands."



The study questions the widely held view that vast numbers of species of plants and animals on Caribbean, Hawaiian and Galapagos islands evolved separately in isolated microcosms of evolution. As a result, the research sheds new light on the mechanisms of evolution of animals in island habitats and their ability to adapt in the future.

Smith, an evolutionary biologist and director of the Center for Tropical Research at the UCLA Institute of the Environment, explained that the exchange of genes among adjacent islands over time can slow evolution and the ability of animals to adapt to their surroundings. "When islands evolve independently, they maintain their own identity," Smith said. "When they begin sharing genetic material, their uniqueness begins to disappear, and the process of evolution slows."

Calsbeek and Smith focused the study on Anolis lizards, a genus of lizards long considered a classic example of adaptive radiation -- the process whereby a single lineage rapidly evolves into many species that are adapted to specific habitats. In the case of Anolis lizards, all species share a single ancestor from South America, and changes in body proportions have occurred based on habitat use; species found on the broad trunks of mature trees have longer legs than those found in shrubbery with narrower branches. Anolis lizards, typically 55–65 millimeters in length, are characterized by a colorful throat fan used in signaling other lizards, and a distinctive black, gray and white back pattern.

Calsbeek and Smith captured approximately 50 Anolis lizards from each of five Caribbean islands in June and July of 2002. The researchers weighed and measured each lizard, and removed a tiny tissue sample from each lizard’s regenerative tail to use in DNA analysis. Working in the lab over the following 10 months, they created a genetic profile for each lizard. Given the numbers and frequencies of physical and genetic differences among lizard populations, they determined that lizards were moving between islands.

Next, the researchers sought to explain this unusual flow of genetic material between islands. Smith said they were "stunned to find an exact match between the gene flow and ocean currents, even in exceptional cases where prevailing currents are not in the expected direction."

Calsbeek said that ocean currents are the most plausible explanation for the gene flow between islands, more likely than human transportation, land-bridges that connected islands more than 10,000 years ago or island colonization by the lizards’ Cuban ancestors.

"It’s quite amazing to think that weather patterns can affect the evolution of island lizards, but the patterns of dispersal match up so well with the direction of ocean currents that the conclusion is almost unavoidable," Calsbeek said. "Whether similar processes are important for other island groups is a question that needs further investigation, but the lizards have opened the door to new ideas about evolution on islands."

Previous research has demonstrated clearly that hurricanes can carry animals vast distances. But not until the UCLA study had research provided evidence that over-water dispersal can affect the evolution of individual genes.


Note to Editors: Digital images are available upon request.

The UCLA Institute of the Environment (www.ioe.ucla.edu/) is dedicated to interdisciplinary research to help produce solutions to complex issues related to the environment. The faculty -- representing a broad range of disciplines, including the sciences, public policy, engineering, law, business, public health -- works together to educate the next generation of professionals, leaders and citizens committed to the health of our planet. The institute includes four centers, including the Coastal Marine Center, the Center for Air Pollution and Exposure, the Center for Tropical Research, and the Center for Urban Sustainability and Predictability.

Phil Hampton | EurekAlert!
Further information:
http://www.ucla.edu/
http://www.ioe.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>