Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study sheds new light on island evolution

04.12.2003


Ryan Calsbeek

Credit: UCLA


A lizard seen through the underside of a leaf

Credit: Ryan Calsbeek, UCLA


Evolution of genetically distinct species that live exclusively on land can be slowed by over-water dispersal following tropical storms, according to a UCLA study that suggests classic theories of island evolution need an overhaul.

In an article published Thursday, Dec. 4, in the journal Nature, postdoctoral fellow Ryan Calsbeek and Professor Thomas B. Smith of the UCLA Center for Tropical Research report that lizards long thought to be evolving independently on Caribbean Islands in fact exchange genetic material. The reason, according to their 12-month study: Hurricanes and lesser storms wash the lizards into prevailing ocean currents, which carry them from island to island.

"The lizards are being prevented from evolving as quickly as they otherwise would have," said Calsbeek, the study’s lead researcher. "We can no longer just assume that certain populations evolved independently on separate islands."



The study questions the widely held view that vast numbers of species of plants and animals on Caribbean, Hawaiian and Galapagos islands evolved separately in isolated microcosms of evolution. As a result, the research sheds new light on the mechanisms of evolution of animals in island habitats and their ability to adapt in the future.

Smith, an evolutionary biologist and director of the Center for Tropical Research at the UCLA Institute of the Environment, explained that the exchange of genes among adjacent islands over time can slow evolution and the ability of animals to adapt to their surroundings. "When islands evolve independently, they maintain their own identity," Smith said. "When they begin sharing genetic material, their uniqueness begins to disappear, and the process of evolution slows."

Calsbeek and Smith focused the study on Anolis lizards, a genus of lizards long considered a classic example of adaptive radiation -- the process whereby a single lineage rapidly evolves into many species that are adapted to specific habitats. In the case of Anolis lizards, all species share a single ancestor from South America, and changes in body proportions have occurred based on habitat use; species found on the broad trunks of mature trees have longer legs than those found in shrubbery with narrower branches. Anolis lizards, typically 55–65 millimeters in length, are characterized by a colorful throat fan used in signaling other lizards, and a distinctive black, gray and white back pattern.

Calsbeek and Smith captured approximately 50 Anolis lizards from each of five Caribbean islands in June and July of 2002. The researchers weighed and measured each lizard, and removed a tiny tissue sample from each lizard’s regenerative tail to use in DNA analysis. Working in the lab over the following 10 months, they created a genetic profile for each lizard. Given the numbers and frequencies of physical and genetic differences among lizard populations, they determined that lizards were moving between islands.

Next, the researchers sought to explain this unusual flow of genetic material between islands. Smith said they were "stunned to find an exact match between the gene flow and ocean currents, even in exceptional cases where prevailing currents are not in the expected direction."

Calsbeek said that ocean currents are the most plausible explanation for the gene flow between islands, more likely than human transportation, land-bridges that connected islands more than 10,000 years ago or island colonization by the lizards’ Cuban ancestors.

"It’s quite amazing to think that weather patterns can affect the evolution of island lizards, but the patterns of dispersal match up so well with the direction of ocean currents that the conclusion is almost unavoidable," Calsbeek said. "Whether similar processes are important for other island groups is a question that needs further investigation, but the lizards have opened the door to new ideas about evolution on islands."

Previous research has demonstrated clearly that hurricanes can carry animals vast distances. But not until the UCLA study had research provided evidence that over-water dispersal can affect the evolution of individual genes.


Note to Editors: Digital images are available upon request.

The UCLA Institute of the Environment (www.ioe.ucla.edu/) is dedicated to interdisciplinary research to help produce solutions to complex issues related to the environment. The faculty -- representing a broad range of disciplines, including the sciences, public policy, engineering, law, business, public health -- works together to educate the next generation of professionals, leaders and citizens committed to the health of our planet. The institute includes four centers, including the Coastal Marine Center, the Center for Air Pollution and Exposure, the Center for Tropical Research, and the Center for Urban Sustainability and Predictability.

Phil Hampton | EurekAlert!
Further information:
http://www.ucla.edu/
http://www.ioe.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>