Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network of scientists is driving force in EU air pollution policy

04.12.2003


Atmospheric protection is a big challenge for the 21st century. In teaching scientists to design outputs that become the stuff of hard policy, the impact of EUROTRAC-2 is far-reaching.

Nitrogen oxides, sulphur dioxide and aerosols, major contributors to atmospheric pollution, do not respect national borders. But thanks to EUREKA project E! 1489 EUROTRAC-2, the EU’s largest ever study on atmospheric pollution, we know much more about where such pollutants were created, under what chemical disguises they travel and their human and environmental health consequences.

EUROTRAC-2 marked the second phase of the original EUROTRAC research initiative, which started 15 years ago and was among the first projects sponsored by EUREKA. This second phase involved over 300 research groups in 14 sub-projects, generating 900 scientific papers, more than 100 PhD theses and vastly expanding our collective knowledge bank.



The 25 countries involved in EUROTRAC-2 overcame scientific and language boundaries to study the many types of air pollution - from the particles flying off car tyres to the movement of clouds of pollutants 18 kilometres above the earth.

This hard evidence is helping to defeat scientific uncertainty, a huge barrier to political attempts to moderate global air pollution. With a clear remit to connect science to policy making, EUROTRAC-2 research is directly shaping negotiations to update the 1996 EU Air Quality Framework Directive and related legislation.

“Transboundary pollution is politically delicate, so the negotiators need a firm scientific platform,” says Dr Pauline Midgley of the National Research Centre for Environment and Health (GSF), Germany, who co-ordinated the project. “The major advance of EUROTRAC-2 was to promote truly interdisciplinary research, and I believe the results will heavily influence EU legislation. Air pollution is a continent-wide issue, and EUREKA helped scientists in Central and Eastern Europe to receive funds they may otherwise have had difficulty finding.”

Connecting science with policy

One of the sub-projects, SATURN, may help city dwellers breathe easier through its in-depth study on urban pollution in parking lots and between buildings.

Researchers used wind tunnels to study how air flows over different shapes of buildings. Finding that air pollutants concentrate within the turbulence created by some designs, SATURN concluded that existing air sampling is inadequate. “You can get different patterns of pollutants on different sides of a street,” says Nicolas Moussiopoulos from the Aristotle University in Greece. In future, city planners may be obliged to consider pollution ‘hot spots’ before building.

Other examples of sub-projects are TROPOSAT, which was partially funded by the European Space Agency and used its satellite data to track regional pollutant drifts, and EXPORT-2, which monitored the global transport of pollution.

EUROTRAC-2 is now complete, but this continent-wide network intends to continue with new funding under the EU’s 6th Framework Programme.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/success-stories

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>