Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Network of scientists is driving force in EU air pollution policy

04.12.2003


Atmospheric protection is a big challenge for the 21st century. In teaching scientists to design outputs that become the stuff of hard policy, the impact of EUROTRAC-2 is far-reaching.

Nitrogen oxides, sulphur dioxide and aerosols, major contributors to atmospheric pollution, do not respect national borders. But thanks to EUREKA project E! 1489 EUROTRAC-2, the EU’s largest ever study on atmospheric pollution, we know much more about where such pollutants were created, under what chemical disguises they travel and their human and environmental health consequences.

EUROTRAC-2 marked the second phase of the original EUROTRAC research initiative, which started 15 years ago and was among the first projects sponsored by EUREKA. This second phase involved over 300 research groups in 14 sub-projects, generating 900 scientific papers, more than 100 PhD theses and vastly expanding our collective knowledge bank.



The 25 countries involved in EUROTRAC-2 overcame scientific and language boundaries to study the many types of air pollution - from the particles flying off car tyres to the movement of clouds of pollutants 18 kilometres above the earth.

This hard evidence is helping to defeat scientific uncertainty, a huge barrier to political attempts to moderate global air pollution. With a clear remit to connect science to policy making, EUROTRAC-2 research is directly shaping negotiations to update the 1996 EU Air Quality Framework Directive and related legislation.

“Transboundary pollution is politically delicate, so the negotiators need a firm scientific platform,” says Dr Pauline Midgley of the National Research Centre for Environment and Health (GSF), Germany, who co-ordinated the project. “The major advance of EUROTRAC-2 was to promote truly interdisciplinary research, and I believe the results will heavily influence EU legislation. Air pollution is a continent-wide issue, and EUREKA helped scientists in Central and Eastern Europe to receive funds they may otherwise have had difficulty finding.”

Connecting science with policy

One of the sub-projects, SATURN, may help city dwellers breathe easier through its in-depth study on urban pollution in parking lots and between buildings.

Researchers used wind tunnels to study how air flows over different shapes of buildings. Finding that air pollutants concentrate within the turbulence created by some designs, SATURN concluded that existing air sampling is inadequate. “You can get different patterns of pollutants on different sides of a street,” says Nicolas Moussiopoulos from the Aristotle University in Greece. In future, city planners may be obliged to consider pollution ‘hot spots’ before building.

Other examples of sub-projects are TROPOSAT, which was partially funded by the European Space Agency and used its satellite data to track regional pollutant drifts, and EXPORT-2, which monitored the global transport of pollution.

EUROTRAC-2 is now complete, but this continent-wide network intends to continue with new funding under the EU’s 6th Framework Programme.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/success-stories

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>