Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated global warming from nutrient shortages for trees and soils

28.11.2003


"We should not count on carbon storage by land ecosystems to make a massive contribution to slowing climate change," said Dr. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution. "And lower storage of carbon in these ecosystems results in a faster increase in atmospheric carbon dioxide, leading to more rapid global warming."

Future atmospheric levels of the notorious heat-trapping gas, carbon dioxide, remain a controversial topic among environmental scientists. Many researchers believe that increasing amounts of CO2, belched into the atmosphere by human fossil fuel use, will be captured through nature’s ability to lock up the carbon in soil organic matter and faster growing trees. But it’s not so simple. A new report, published in the November 28 Science, shows that the availability of nitrogen, in forms usable by plants, will probably be too low for large increases in carbon storage.

Ecosystems on land can store carbon, through bigger trees and more organic matter in soils, but shortages of mineral nutrients, especially nitrogen, curb potential future carbon storage. Several approaches to calculating ecosystem carbon storage, including some featured in the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) assume that nitrogen available to plants is abundant, even though current nitrogen limitation is widespread. "Realistic scenarios for future changes in nitrogen availability limit ecosystem carbon storage to the low end of the range presented in the recent IPCC report," says Field.



"In a garden limited by water, a gardener would not expect a big increase in growth from adding potassium. Similarly, plants in natural ecosystems limited by nitrogen may not grow much faster when they are exposed to increased levels of carbon dioxide," explained co-author Jeffrey Dukes. "Plants will need more nitrogen if they’re going to lock up more carbon. The models used by the IPCC just didn’t acknowledge that to a sufficient extent." Human activities tend to add biologically available nitrogen to ecosystems, but the additions are patchy in space and the added nitrogen can be rapidly lost. According to Field, "Even with generous assumptions about future increases in biologically available nitrogen, we still couldn’t find enough nitrogen to support the range of carbon storage discussed in the IPCC report."

These new findings highlight the challenge of limiting global warming. Dukes concludes, "Our study suggests that we’ve been counting too much on the natural ecosystems to bail us out of our carbon emissions problem. The natural systems can help, but there are limits to their response. We have to make sure these limits are incorporated into our models."


Authors on this study were Bruce Hungate, Merriam-Powell Center for Environment Research, Northern Arizona University, Flagstaff; Jeffrey Dukes, M. Rebecca Shaw and Christopher Field, Department of Global Ecology, Carnegie Institution, Stanford, CA, and Yiqi Luo, Department of Botany and Microbiology, University of Oklahoma, Norman. This study was funded by the National Science Foundation, through the National Center for Ecological Analysis and Synthesis.

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Plant Biology and Global Ecology in Stanford, CA.; The Observatories in Pasadena, CA, and Chile; Embryology, in Baltimore, MD.; and the Department of Terrestrial Magnetism and the Geophysical Laboratory in Washington, DC.

Dr. Christopher Field | EurekAlert!
Further information:
http://www.CarnegieInstitution.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>