Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated global warming from nutrient shortages for trees and soils

28.11.2003


"We should not count on carbon storage by land ecosystems to make a massive contribution to slowing climate change," said Dr. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution. "And lower storage of carbon in these ecosystems results in a faster increase in atmospheric carbon dioxide, leading to more rapid global warming."

Future atmospheric levels of the notorious heat-trapping gas, carbon dioxide, remain a controversial topic among environmental scientists. Many researchers believe that increasing amounts of CO2, belched into the atmosphere by human fossil fuel use, will be captured through nature’s ability to lock up the carbon in soil organic matter and faster growing trees. But it’s not so simple. A new report, published in the November 28 Science, shows that the availability of nitrogen, in forms usable by plants, will probably be too low for large increases in carbon storage.

Ecosystems on land can store carbon, through bigger trees and more organic matter in soils, but shortages of mineral nutrients, especially nitrogen, curb potential future carbon storage. Several approaches to calculating ecosystem carbon storage, including some featured in the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) assume that nitrogen available to plants is abundant, even though current nitrogen limitation is widespread. "Realistic scenarios for future changes in nitrogen availability limit ecosystem carbon storage to the low end of the range presented in the recent IPCC report," says Field.



"In a garden limited by water, a gardener would not expect a big increase in growth from adding potassium. Similarly, plants in natural ecosystems limited by nitrogen may not grow much faster when they are exposed to increased levels of carbon dioxide," explained co-author Jeffrey Dukes. "Plants will need more nitrogen if they’re going to lock up more carbon. The models used by the IPCC just didn’t acknowledge that to a sufficient extent." Human activities tend to add biologically available nitrogen to ecosystems, but the additions are patchy in space and the added nitrogen can be rapidly lost. According to Field, "Even with generous assumptions about future increases in biologically available nitrogen, we still couldn’t find enough nitrogen to support the range of carbon storage discussed in the IPCC report."

These new findings highlight the challenge of limiting global warming. Dukes concludes, "Our study suggests that we’ve been counting too much on the natural ecosystems to bail us out of our carbon emissions problem. The natural systems can help, but there are limits to their response. We have to make sure these limits are incorporated into our models."


Authors on this study were Bruce Hungate, Merriam-Powell Center for Environment Research, Northern Arizona University, Flagstaff; Jeffrey Dukes, M. Rebecca Shaw and Christopher Field, Department of Global Ecology, Carnegie Institution, Stanford, CA, and Yiqi Luo, Department of Botany and Microbiology, University of Oklahoma, Norman. This study was funded by the National Science Foundation, through the National Center for Ecological Analysis and Synthesis.

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Plant Biology and Global Ecology in Stanford, CA.; The Observatories in Pasadena, CA, and Chile; Embryology, in Baltimore, MD.; and the Department of Terrestrial Magnetism and the Geophysical Laboratory in Washington, DC.

Dr. Christopher Field | EurekAlert!
Further information:
http://www.CarnegieInstitution.org

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>