Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerated global warming from nutrient shortages for trees and soils

28.11.2003


"We should not count on carbon storage by land ecosystems to make a massive contribution to slowing climate change," said Dr. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution. "And lower storage of carbon in these ecosystems results in a faster increase in atmospheric carbon dioxide, leading to more rapid global warming."

Future atmospheric levels of the notorious heat-trapping gas, carbon dioxide, remain a controversial topic among environmental scientists. Many researchers believe that increasing amounts of CO2, belched into the atmosphere by human fossil fuel use, will be captured through nature’s ability to lock up the carbon in soil organic matter and faster growing trees. But it’s not so simple. A new report, published in the November 28 Science, shows that the availability of nitrogen, in forms usable by plants, will probably be too low for large increases in carbon storage.

Ecosystems on land can store carbon, through bigger trees and more organic matter in soils, but shortages of mineral nutrients, especially nitrogen, curb potential future carbon storage. Several approaches to calculating ecosystem carbon storage, including some featured in the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) assume that nitrogen available to plants is abundant, even though current nitrogen limitation is widespread. "Realistic scenarios for future changes in nitrogen availability limit ecosystem carbon storage to the low end of the range presented in the recent IPCC report," says Field.



"In a garden limited by water, a gardener would not expect a big increase in growth from adding potassium. Similarly, plants in natural ecosystems limited by nitrogen may not grow much faster when they are exposed to increased levels of carbon dioxide," explained co-author Jeffrey Dukes. "Plants will need more nitrogen if they’re going to lock up more carbon. The models used by the IPCC just didn’t acknowledge that to a sufficient extent." Human activities tend to add biologically available nitrogen to ecosystems, but the additions are patchy in space and the added nitrogen can be rapidly lost. According to Field, "Even with generous assumptions about future increases in biologically available nitrogen, we still couldn’t find enough nitrogen to support the range of carbon storage discussed in the IPCC report."

These new findings highlight the challenge of limiting global warming. Dukes concludes, "Our study suggests that we’ve been counting too much on the natural ecosystems to bail us out of our carbon emissions problem. The natural systems can help, but there are limits to their response. We have to make sure these limits are incorporated into our models."


Authors on this study were Bruce Hungate, Merriam-Powell Center for Environment Research, Northern Arizona University, Flagstaff; Jeffrey Dukes, M. Rebecca Shaw and Christopher Field, Department of Global Ecology, Carnegie Institution, Stanford, CA, and Yiqi Luo, Department of Botany and Microbiology, University of Oklahoma, Norman. This study was funded by the National Science Foundation, through the National Center for Ecological Analysis and Synthesis.

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Plant Biology and Global Ecology in Stanford, CA.; The Observatories in Pasadena, CA, and Chile; Embryology, in Baltimore, MD.; and the Department of Terrestrial Magnetism and the Geophysical Laboratory in Washington, DC.

Dr. Christopher Field | EurekAlert!
Further information:
http://www.CarnegieInstitution.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>