Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible urban plants found to contain lead

24.11.2003


Chicago has one of the highest rates of lead poisoning in the United States, an extremely persistent health problem that particularly plagues urban areas. Now a new study by Northwestern University researchers shows that edible plants grown in urban gardens could contain potentially hazardous amounts of lead.



Kimberly A. Gray, associate professor of civil and environmental engineering at Northwestern University, and her team tested a variety of plants cultivated in Chicago residential gardens rich with lead-contaminated soil. They found that leafy vegetables and herbs were highly likely to also be contaminated with lead.

The findings were published online by The Science of the Total Environment and will appear in an upcoming print issue of the journal.


The researchers harvested fruiting plants, leafy greens, herbs and root vegetables from 17 gardens, washed and dried the plants, and then separated root, shoot and fruit before analyzing them for lead content.

While the majority of the lead was concentrated in the roots, some lead was detected in shoots, which is often the portion of the plant that people eat. Gray’s team calculated what amount of lead would be ingested by consuming some of the herbs such as cilantro. They found that those levels exceeded what would be excreted in children or women, which means lead would be stored in the body. These findings are very important for children and women of childbearing age.

"We are concerned about the edible portions of leafy vegetables and herbs that were found to contain lead," said Gray. "It is important that urban gardeners locate fruit and vegetable gardens away from buildings, test the lead levels in their soils and develop strategies to ensure safety for them and their children."

The lead concentration in the fruit of other plants, such as strawberries and tomatoes, was not found to be hazardous. Root vegetables, such as carrots and onions, are likely to have high levels of lead, but the very small sample size did not allow the researchers to draw a conclusion about this group.

Much of the soil’s lead contamination comes from deteriorated paint, past use of lead-containing gasoline and industrial air pollution. Lead in soil does not biodegrade or decay.

The study grew out of an earlier federally funded, two-year phytoremediation project in Chicago’s West Town community in which Gray and colleagues wanted to see if green plants could remove lead from contaminated soil or, at a minimum, stabilize the lead in the soil to reduce exposure of humans and animals to the toxin.

Other authors on the paper are Mary E. Finster, a Northwestern University graduate student working with Gray, and Helen Binns, M.D., an associate professor of pediatrics at Northwestern’s Feinberg School of Medicine.


The research was supported by a grant from the U.S. Department of Housing and Urban Development.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>