Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible urban plants found to contain lead

24.11.2003


Chicago has one of the highest rates of lead poisoning in the United States, an extremely persistent health problem that particularly plagues urban areas. Now a new study by Northwestern University researchers shows that edible plants grown in urban gardens could contain potentially hazardous amounts of lead.



Kimberly A. Gray, associate professor of civil and environmental engineering at Northwestern University, and her team tested a variety of plants cultivated in Chicago residential gardens rich with lead-contaminated soil. They found that leafy vegetables and herbs were highly likely to also be contaminated with lead.

The findings were published online by The Science of the Total Environment and will appear in an upcoming print issue of the journal.


The researchers harvested fruiting plants, leafy greens, herbs and root vegetables from 17 gardens, washed and dried the plants, and then separated root, shoot and fruit before analyzing them for lead content.

While the majority of the lead was concentrated in the roots, some lead was detected in shoots, which is often the portion of the plant that people eat. Gray’s team calculated what amount of lead would be ingested by consuming some of the herbs such as cilantro. They found that those levels exceeded what would be excreted in children or women, which means lead would be stored in the body. These findings are very important for children and women of childbearing age.

"We are concerned about the edible portions of leafy vegetables and herbs that were found to contain lead," said Gray. "It is important that urban gardeners locate fruit and vegetable gardens away from buildings, test the lead levels in their soils and develop strategies to ensure safety for them and their children."

The lead concentration in the fruit of other plants, such as strawberries and tomatoes, was not found to be hazardous. Root vegetables, such as carrots and onions, are likely to have high levels of lead, but the very small sample size did not allow the researchers to draw a conclusion about this group.

Much of the soil’s lead contamination comes from deteriorated paint, past use of lead-containing gasoline and industrial air pollution. Lead in soil does not biodegrade or decay.

The study grew out of an earlier federally funded, two-year phytoremediation project in Chicago’s West Town community in which Gray and colleagues wanted to see if green plants could remove lead from contaminated soil or, at a minimum, stabilize the lead in the soil to reduce exposure of humans and animals to the toxin.

Other authors on the paper are Mary E. Finster, a Northwestern University graduate student working with Gray, and Helen Binns, M.D., an associate professor of pediatrics at Northwestern’s Feinberg School of Medicine.


The research was supported by a grant from the U.S. Department of Housing and Urban Development.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>