Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible urban plants found to contain lead

24.11.2003


Chicago has one of the highest rates of lead poisoning in the United States, an extremely persistent health problem that particularly plagues urban areas. Now a new study by Northwestern University researchers shows that edible plants grown in urban gardens could contain potentially hazardous amounts of lead.



Kimberly A. Gray, associate professor of civil and environmental engineering at Northwestern University, and her team tested a variety of plants cultivated in Chicago residential gardens rich with lead-contaminated soil. They found that leafy vegetables and herbs were highly likely to also be contaminated with lead.

The findings were published online by The Science of the Total Environment and will appear in an upcoming print issue of the journal.


The researchers harvested fruiting plants, leafy greens, herbs and root vegetables from 17 gardens, washed and dried the plants, and then separated root, shoot and fruit before analyzing them for lead content.

While the majority of the lead was concentrated in the roots, some lead was detected in shoots, which is often the portion of the plant that people eat. Gray’s team calculated what amount of lead would be ingested by consuming some of the herbs such as cilantro. They found that those levels exceeded what would be excreted in children or women, which means lead would be stored in the body. These findings are very important for children and women of childbearing age.

"We are concerned about the edible portions of leafy vegetables and herbs that were found to contain lead," said Gray. "It is important that urban gardeners locate fruit and vegetable gardens away from buildings, test the lead levels in their soils and develop strategies to ensure safety for them and their children."

The lead concentration in the fruit of other plants, such as strawberries and tomatoes, was not found to be hazardous. Root vegetables, such as carrots and onions, are likely to have high levels of lead, but the very small sample size did not allow the researchers to draw a conclusion about this group.

Much of the soil’s lead contamination comes from deteriorated paint, past use of lead-containing gasoline and industrial air pollution. Lead in soil does not biodegrade or decay.

The study grew out of an earlier federally funded, two-year phytoremediation project in Chicago’s West Town community in which Gray and colleagues wanted to see if green plants could remove lead from contaminated soil or, at a minimum, stabilize the lead in the soil to reduce exposure of humans and animals to the toxin.

Other authors on the paper are Mary E. Finster, a Northwestern University graduate student working with Gray, and Helen Binns, M.D., an associate professor of pediatrics at Northwestern’s Feinberg School of Medicine.


The research was supported by a grant from the U.S. Department of Housing and Urban Development.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>