Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible urban plants found to contain lead

24.11.2003


Chicago has one of the highest rates of lead poisoning in the United States, an extremely persistent health problem that particularly plagues urban areas. Now a new study by Northwestern University researchers shows that edible plants grown in urban gardens could contain potentially hazardous amounts of lead.



Kimberly A. Gray, associate professor of civil and environmental engineering at Northwestern University, and her team tested a variety of plants cultivated in Chicago residential gardens rich with lead-contaminated soil. They found that leafy vegetables and herbs were highly likely to also be contaminated with lead.

The findings were published online by The Science of the Total Environment and will appear in an upcoming print issue of the journal.


The researchers harvested fruiting plants, leafy greens, herbs and root vegetables from 17 gardens, washed and dried the plants, and then separated root, shoot and fruit before analyzing them for lead content.

While the majority of the lead was concentrated in the roots, some lead was detected in shoots, which is often the portion of the plant that people eat. Gray’s team calculated what amount of lead would be ingested by consuming some of the herbs such as cilantro. They found that those levels exceeded what would be excreted in children or women, which means lead would be stored in the body. These findings are very important for children and women of childbearing age.

"We are concerned about the edible portions of leafy vegetables and herbs that were found to contain lead," said Gray. "It is important that urban gardeners locate fruit and vegetable gardens away from buildings, test the lead levels in their soils and develop strategies to ensure safety for them and their children."

The lead concentration in the fruit of other plants, such as strawberries and tomatoes, was not found to be hazardous. Root vegetables, such as carrots and onions, are likely to have high levels of lead, but the very small sample size did not allow the researchers to draw a conclusion about this group.

Much of the soil’s lead contamination comes from deteriorated paint, past use of lead-containing gasoline and industrial air pollution. Lead in soil does not biodegrade or decay.

The study grew out of an earlier federally funded, two-year phytoremediation project in Chicago’s West Town community in which Gray and colleagues wanted to see if green plants could remove lead from contaminated soil or, at a minimum, stabilize the lead in the soil to reduce exposure of humans and animals to the toxin.

Other authors on the paper are Mary E. Finster, a Northwestern University graduate student working with Gray, and Helen Binns, M.D., an associate professor of pediatrics at Northwestern’s Feinberg School of Medicine.


The research was supported by a grant from the U.S. Department of Housing and Urban Development.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>