Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-cleaning the toxic residues

21.11.2003


Enzymes, microbes and fungi are being brought into service to help clean up industrial and urban pollution, minesites, pesticide residues and chemically degraded agricultural areas.



CSIRO’s Dr John Oakeshott says that bioremediation of pesticides and other toxins has the potential to earn significant export dollars, as the work of Australian researchers finds overseas markets. It can also mean huge savings for Australian industry.

CSIRO is hosting an international Bioremediation Workshop in Melbourne on Thursday and Friday, with researchers from CSIR (India), and delegates from a number of scientific research institutions in Europe and Asia.


The workshop aims to develop research alliances with leading international research agencies.

"Clean-up of old industrial sites and even recent chemical spills can be extremely costly," says Dr Greg Davis of CSIRO Land and Water. "Bioremediation offers considerable savings and promotes cleaner natural processes.

"Natural rates of clean-up by microbes are sometimes adequate to reduce pollution levels, but in many cases the rates need to be accelerated to make the clean-up more rapid and less expensive - and to reduce the migration and risks of chemical pollutants in the short term," says Dr Davis.

"A big challenge is identifying microbes that have the right capability, and then scaling processes up from laboratory scale to field scale to show that the microbes can really do the job," he says. "The CSIRO team has done this research for a range of contaminants, including petroleum hydrocarbons, pesticides, nutrients, industrial solvents and metals.

"Sulphate reducing bacteria are also being developed that will play a critical role in the remediation of acid mine drainage, an area of great concern to the mining industry," says Dr Davis.

Dr Oakeshott of CSIRO Entomology says that four CSIRO Divisions have capabilities in bioremediation, and are looking at potential new industries based on the use of biological materials and processes.

"One innovative approach is the development of an enzyme-based process for the detoxification of residues in waste waters from agricultural production and processing industries and off the surfaces of commodities," he says.

Dr Oakeshott says that the CSIRO bioremediation team has strong research connections with The Australian National University, The University of California (Davis), Tampere University of Technology Finland, IACR Rothamstead, the University of the Philippines, as well as Orica Australia, BP International, Rio Tinto, the Natural Heritage Trust, Horticulture Australia Ltd (HAL), and the Australian Centre for International Agricultural research (ACIAR).

More information from:

Dr Sid Jain, CSIRO Entomology, mobile: 0408 115 839
Dr John Oakeshott, CSIRO Entomology, 02-6246 4157
Dr Greg Davis, CSIRO Land and Water, 08-9333 6386, mobile: 0439 931 209
Dr Robyn Russell, CSIRO Entomology, 02-6246 4160
Linda Leavitt, CSIRO Entomology, 02-6246 4033

Nick Goldie | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prbioremedial

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>