Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-cleaning the toxic residues

21.11.2003


Enzymes, microbes and fungi are being brought into service to help clean up industrial and urban pollution, minesites, pesticide residues and chemically degraded agricultural areas.



CSIRO’s Dr John Oakeshott says that bioremediation of pesticides and other toxins has the potential to earn significant export dollars, as the work of Australian researchers finds overseas markets. It can also mean huge savings for Australian industry.

CSIRO is hosting an international Bioremediation Workshop in Melbourne on Thursday and Friday, with researchers from CSIR (India), and delegates from a number of scientific research institutions in Europe and Asia.


The workshop aims to develop research alliances with leading international research agencies.

"Clean-up of old industrial sites and even recent chemical spills can be extremely costly," says Dr Greg Davis of CSIRO Land and Water. "Bioremediation offers considerable savings and promotes cleaner natural processes.

"Natural rates of clean-up by microbes are sometimes adequate to reduce pollution levels, but in many cases the rates need to be accelerated to make the clean-up more rapid and less expensive - and to reduce the migration and risks of chemical pollutants in the short term," says Dr Davis.

"A big challenge is identifying microbes that have the right capability, and then scaling processes up from laboratory scale to field scale to show that the microbes can really do the job," he says. "The CSIRO team has done this research for a range of contaminants, including petroleum hydrocarbons, pesticides, nutrients, industrial solvents and metals.

"Sulphate reducing bacteria are also being developed that will play a critical role in the remediation of acid mine drainage, an area of great concern to the mining industry," says Dr Davis.

Dr Oakeshott of CSIRO Entomology says that four CSIRO Divisions have capabilities in bioremediation, and are looking at potential new industries based on the use of biological materials and processes.

"One innovative approach is the development of an enzyme-based process for the detoxification of residues in waste waters from agricultural production and processing industries and off the surfaces of commodities," he says.

Dr Oakeshott says that the CSIRO bioremediation team has strong research connections with The Australian National University, The University of California (Davis), Tampere University of Technology Finland, IACR Rothamstead, the University of the Philippines, as well as Orica Australia, BP International, Rio Tinto, the Natural Heritage Trust, Horticulture Australia Ltd (HAL), and the Australian Centre for International Agricultural research (ACIAR).

More information from:

Dr Sid Jain, CSIRO Entomology, mobile: 0408 115 839
Dr John Oakeshott, CSIRO Entomology, 02-6246 4157
Dr Greg Davis, CSIRO Land and Water, 08-9333 6386, mobile: 0439 931 209
Dr Robyn Russell, CSIRO Entomology, 02-6246 4160
Linda Leavitt, CSIRO Entomology, 02-6246 4033

Nick Goldie | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prbioremedial

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>