Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study unearths cliques in the food web

20.11.2003


A study published this week in the journal Nature has revealed that even the food chain has cliques



Research by a team at Michigan State University, University of Maryland and National Oceanic and Atmospheric Administration’s Great Lakes Environmental Research Laboratory examined what ecologists have previously theorized: that plants and animals in a complex network of interconnecting food chains - called a food web -- interact more frequently with each other than with species outside of their group.

It’s a dynamic that’s crucial to understanding the food web - the interaction of multiple food chains. This understanding will help natural resource managers make better management decisions that affect food webs.


"This fascinating breakthrough will help us better understand food system dynamics," said William Taylor, chair of MSU’s Department of Fisheries and Wildlife and a member of the research team. "Having a structured way to look at complex food webs could give natural resource professionals a clearer vision of how to manage ecosystems for sustainability."

This research contributes to a more sophisticated understanding of food web dynamics by illustrating how species interact and, thus, how they impact each other.

Strong interactions exist among species within their group - also called compartments -- and weaker interactions exist between individual compartments.

The research applies principles for describing social systems to food webs-an exciting new way to view food web structures and to identify compartments in food-webs. The scientists employed a recently developed social network method that identifies cliques.

The research also applies principles for describing social systems to food webs -- an exciting new way to view food web structures and to identify compartments in food webs. The scientists employed a recently developed social network method.

"This appears also to be the case for food web compartments in ecology, and this method identifies compartments in which interactions are concentrated." said Ken Frank, associate professor of fisheries and wildlife and education said. "This study highlights the importance and necessity of interdisciplinary science and problem solving."

"With humans, we often find evidence of cliques. This appears also to be the case for food web compartments in ecology, and this method identifies compartments in which interactions are concentrated," said research team member Ken Frank, an MSU associate professor jointly appointed in counseling, educational psychology and special education and fisheries and wildlife. "This study highlights the importance and necessity of interdisciplinary science and problem solving."

Predators are likely to have more than one prey and prey are likely to have more than one predator, thereby creating a web of interactions, not a chain. A common approach of understanding how species interact in food webs is to categorize them into hierarchical levels, where groups of species with similar food resources and predators are associated with each other.

The one-level concept alone, however, provides an incomplete understanding of food webs, because it only provides one view of the picture; it looks at which species are competitors, but not at the other associations that species make in the food web.

For example, in economics, people’s purchasing decisions are not solely influenced by the decisions made by their neighbors, who are likely in the same economic bracket. Rather, people also are influenced by their friends, who may be in another economic bracket, but in a same clique or compartment.

"The compartment method of measuring species interactions in an ecosystem has its benefits," said Ann Krause, an MSU doctoral student, and the paper’s first author. "This method is more systematic and rigorous, as it assigns species to certain compartments based on observed research-not based on a researcher’s hypothesis-and tests the results for statistical significance. Moreover, if compartments can be found to enhance stability in nature like they were found to do in theoretical research, we now have another tool with which to better understand stability in ecosystems.

"Stability is important for maintaining ecosystem health, and compartments may strengthen delicate food webs."

"This study will provide a mechanism for others to study and measure the stability of food webs," added Doran Mason of the NOAA Great Lakes Environmental Research Laboratory, a member of the research team. "Understanding food web stability significantly enhances our understanding of ecosystems which, of course, helps biologists and managers in their efforts to protect and improve the system.

"With future applications based on this research, we may find that managers should also focus on maintaining compartments in food webs, which are whole groups of species, not just maintaining the population of a single species, to maintain ecosystem health and integrity."


###
This research was funded by the Great Lakes Fishery Commission, the National Institute of Child Health and Human Development, and the National Science Foundation.

William Taylor | EurekAlert!
Further information:
http://www.msu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>