Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bush Administration plan to reduce global warming could devastate sea life

18.11.2003


URI marine biologist says CO2 injection in deep sea would alter ocean chemistry, affect numerous creatures



A Bush Administration proposal to mitigate the effects of global warming by capturing carbon dioxide emissions from power plants and injecting it into the deep sea could have disastrous effects on sea life, according to a University of Rhode Island researcher.

Brad Seibel, assistant professor of marine biology at URI, said that while the Administration’s plan is still in the experimental stage, enough is already known about the biology of marine organisms to say with certainty that the plan will harm the marine environment in significant ways.


Increased CO2 in the oceans would result in decreases in the pH levels (the measure of acidity) of seawater, resulting in dramatic physiological effects on many species, Seibel said. Shallow-living organisms like shelled mollusks and corals are already being affected by the growing levels of CO2 in the atmosphere. As atmospheric CO2 diffuses into the upper layers of the water, it inhibits the ability of shellfish to form shells and causes coral reefs to dissolve.

Deep-sea creatures are even more sensitive to environmental changes, he said. In some species, their metabolism would become suppressed and lead to retarded growth and reproduction, while others would be unable to transport oxygen in their blood.

"CO2 injection would be detrimental to a great many organisms," said the URI biologist. "It would kill everything that can’t swim fast enough to get out of the way, because in concentrated form it’s highly toxic, even to humans. But the Department of Energy seems willing to sacrifice the animals of the deep sea if it will stop global warming. That’s not entirely unreasonable considering that if we keep stalling on taking serious measures to reduce global warming, we won’t be able to do anything about it. But I’d still like to see that we’re doing everything else possible to reduce emissions before we begin polluting the deep-sea."

The government’s "carbon sequestration" plan is designed to collect carbon dioxide emissions that would otherwise be released into the atmosphere and store them in underground geologic formations or deep in the ocean. Energy Secretary Spencer Abraham announced in September the creation of seven regional partnerships to establish the framework needed to develop the necessary technologies and put them into action. In addition, the Bush Administration convened a Carbon Sequestration Leadership Forum last June where energy ministers from 13 countries discussed the potential for CO2 injections around the globe.

In the new book Climate Change and Biodiversity, published in August, Seibel and co-author Victoria Fabry wrote: "From the perspective of marine organisms, deep-ocean sequestration means concentrating an otherwise dilute toxin to well above lethal levels, and placing it in an environment where the organisms are less tolerant of environmental fluctuation in general and CO2 in particular…Localized devastation of biological communities at the injection sites is certain."

As seawater becomes acidified, growth rates of calcareous phytoplankton (those with calcium carbonate shells) will be reduced as a result of the effects of CO2 on the process of calcification. Metabolism in some animal species may also be depressed by increased acidity. Furthermore, some fish, squids, and shrimps will have a diminished capacity for oxygen uptake at the gill and transportation through their bloodstream, leading to asphyxiation.

Seibel said that there is typically a natural exchange of CO2 between the sea and the atmosphere, but increases of atmospheric CO2 are already affecting the equilibrium. Intentional injections of CO2 will further disrupt the ecosystem.

"The carbon dioxide-carbonate system is arguably the most important chemical equilibria in the ocean," Seibel and Fabry wrote. "It influences nearly every aspect of marine science, including ecology and, ultimately, the biodiversity of the oceans."

Brad Seibel, assistant professor of marine biology in the University of Rhode Island’s Department of Biological Sciences, joined the URI faculty in the summer of 2003 after having worked as a marine ecologist at the Monterey Bay Aquarium Research Institute in Monterey, Calif. for several years. He received undergraduate and doctorate degrees from the University of California, Santa Barbara. In addition to studying the impact of CO2 on deep-sea creatures, his research focuses on the physiology and adaptations of marine organisms, especially squid, living in extreme environments like the waters around Antarctica.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>