Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bush Administration plan to reduce global warming could devastate sea life

18.11.2003


URI marine biologist says CO2 injection in deep sea would alter ocean chemistry, affect numerous creatures



A Bush Administration proposal to mitigate the effects of global warming by capturing carbon dioxide emissions from power plants and injecting it into the deep sea could have disastrous effects on sea life, according to a University of Rhode Island researcher.

Brad Seibel, assistant professor of marine biology at URI, said that while the Administration’s plan is still in the experimental stage, enough is already known about the biology of marine organisms to say with certainty that the plan will harm the marine environment in significant ways.


Increased CO2 in the oceans would result in decreases in the pH levels (the measure of acidity) of seawater, resulting in dramatic physiological effects on many species, Seibel said. Shallow-living organisms like shelled mollusks and corals are already being affected by the growing levels of CO2 in the atmosphere. As atmospheric CO2 diffuses into the upper layers of the water, it inhibits the ability of shellfish to form shells and causes coral reefs to dissolve.

Deep-sea creatures are even more sensitive to environmental changes, he said. In some species, their metabolism would become suppressed and lead to retarded growth and reproduction, while others would be unable to transport oxygen in their blood.

"CO2 injection would be detrimental to a great many organisms," said the URI biologist. "It would kill everything that can’t swim fast enough to get out of the way, because in concentrated form it’s highly toxic, even to humans. But the Department of Energy seems willing to sacrifice the animals of the deep sea if it will stop global warming. That’s not entirely unreasonable considering that if we keep stalling on taking serious measures to reduce global warming, we won’t be able to do anything about it. But I’d still like to see that we’re doing everything else possible to reduce emissions before we begin polluting the deep-sea."

The government’s "carbon sequestration" plan is designed to collect carbon dioxide emissions that would otherwise be released into the atmosphere and store them in underground geologic formations or deep in the ocean. Energy Secretary Spencer Abraham announced in September the creation of seven regional partnerships to establish the framework needed to develop the necessary technologies and put them into action. In addition, the Bush Administration convened a Carbon Sequestration Leadership Forum last June where energy ministers from 13 countries discussed the potential for CO2 injections around the globe.

In the new book Climate Change and Biodiversity, published in August, Seibel and co-author Victoria Fabry wrote: "From the perspective of marine organisms, deep-ocean sequestration means concentrating an otherwise dilute toxin to well above lethal levels, and placing it in an environment where the organisms are less tolerant of environmental fluctuation in general and CO2 in particular…Localized devastation of biological communities at the injection sites is certain."

As seawater becomes acidified, growth rates of calcareous phytoplankton (those with calcium carbonate shells) will be reduced as a result of the effects of CO2 on the process of calcification. Metabolism in some animal species may also be depressed by increased acidity. Furthermore, some fish, squids, and shrimps will have a diminished capacity for oxygen uptake at the gill and transportation through their bloodstream, leading to asphyxiation.

Seibel said that there is typically a natural exchange of CO2 between the sea and the atmosphere, but increases of atmospheric CO2 are already affecting the equilibrium. Intentional injections of CO2 will further disrupt the ecosystem.

"The carbon dioxide-carbonate system is arguably the most important chemical equilibria in the ocean," Seibel and Fabry wrote. "It influences nearly every aspect of marine science, including ecology and, ultimately, the biodiversity of the oceans."

Brad Seibel, assistant professor of marine biology in the University of Rhode Island’s Department of Biological Sciences, joined the URI faculty in the summer of 2003 after having worked as a marine ecologist at the Monterey Bay Aquarium Research Institute in Monterey, Calif. for several years. He received undergraduate and doctorate degrees from the University of California, Santa Barbara. In addition to studying the impact of CO2 on deep-sea creatures, his research focuses on the physiology and adaptations of marine organisms, especially squid, living in extreme environments like the waters around Antarctica.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>