Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cornell researchers’ probe discovers pollutant-eating microbe and a strategy to speed cleanup of old gasworks


Cornell University microbiologists, looking for bioremediation microbes to "eat" toxic pollutants, report the first field test of a technique called stable isotopic probing (SIP) in a contaminated site. And they announce the discovery and isolation of a bacterium that biodegrades naphthalene in coal tar contamination.

Scanning electron micrograph shows the newly discovered Polaromonas naphthalenivorans strain CJ2 bacterium dividing in two, each about 1 micron in diameter. The napthalene-eating ’bug’ was found in a coal-tar disposal site along the Hudson River by researchers from the NSF Microbial Observatory at Cornell University.
W.C. Ghiorse.
Copyright © 2003 PNAS.

Although naphthalene is not the most toxic component in coal tar, the microbiologists say their discovery might eventually help to speed the cleanup of hundreds of 19th and 20th century gasworks throughout the United States where the manufacture of gas from coal for homes and street lighting left a toxic legacy in the ground.

The National Science Foundation-funded research is reported in the online edition of Proceedings of the National Academy of Sciences (PNAS early edition, Oct. 27, 2003) by researchers working at the NSF Microbial Observatory at Cornell.

The naphthalene-eating bacterium, Polaromonas naphthalenivorans strain CJ2, was discovered in a 40-year-old municipal gasworks coal tar disposal site in South Glens Falls, N.Y., near the west bank of the Hudson River.

"Strain CJ2 alone won’t solve the coal tar problem because naphthalene is only one of the many organic chemicals involved. That’s why we’re going back to look for other microorganisms -- perhaps with similar gene sequences -- that might be biodegrading other toxins," says the article’s lead author, Eugene L. Madsen, associate professor of microbiology in Cornell’s College of Agriculture and Life Sciences. He says that naphthalene’s carcinogenic relatives in coal tar, known as polycylic aromatic hydrocarbons, are toxins that his research group hopes to degrade.

The use of SIP to identify pollutant-eating microbes is something like using the milk-mustache test to discover which child drank the milk. In the first successful field application of SIP in a contaminated site, the microbiologists released into the Hudson River coal tar waste a small amount of naphthalene-containing carbon-13, a stable isotope of carbon. Then they looked for two types of "milk-mustache evidence" proving that the naphthalene was being processed by microorganisms. Part of this evidence was that the bacteria in the sediment produced carbon dioxide (CO2) labeled with carbon-13. In addition, the same bacteria incorporated carbon-13 into their nucleic acids. After extraction of nucleic acids from the sediment, DNA testing revealed a signature DNA sequence for the bacteria responsible for biodegrading the naphthalene. Subsequently, the researchers were able to isolate from the sediment and grow a previously unknown naphthalene-degrading bacterium with a matching DNA signature. The microbiologists then grew the bacterium, dubbed CJ2, and added it to the coal tar sediment samples, where the microorganism accelerated the loss of naphthalene.

The harnessing of CJ2 is related to the 1997 discovery by Cornell microbiologists of a bacterium (Dehalococcoides ethenogenes ) that biodegrades the industrial cleaning compound trichlorethylene (TCE). Billions of D. ethenogenes microbes are now at work at a New Jersey Superfund site and other TCE-polluted locations.

"D. ethenogenes was discovered, almost accidentally, before we had the advantage of stable isotopic probing," Madsen observes, "Finding the bugs actually responsible for biodegradation processes among the millions of known and unknown species out there is always difficult, but we’ve shown that SIP makes the search a little easier." The SIP strategy had been tested before in the laboratory and in agricultural plots but never before in a genuine contaminated field site.

Other authors of the PNAS article, "Discovery of a novel bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment," include: Che Ok Jeon, currently a research scientist at the Korea Research Institute of Bioscience and Biotechnology; Woojun Park and Christopher DeRito, Cornell graduate students; P. Padmanabhan, research scientist at the National Environmental Engineering Research Institute, India; and J.R. Snape, senior microbiologist, AstraZeneca, England.

The research was conducted with cooperation from Niagara Mohawk Power Corp. and the New York State Department of Environmental Conservation.

Roger Segelken | Cornell News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>