Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell researchers’ probe discovers pollutant-eating microbe and a strategy to speed cleanup of old gasworks

28.10.2003


Cornell University microbiologists, looking for bioremediation microbes to "eat" toxic pollutants, report the first field test of a technique called stable isotopic probing (SIP) in a contaminated site. And they announce the discovery and isolation of a bacterium that biodegrades naphthalene in coal tar contamination.


Scanning electron micrograph shows the newly discovered Polaromonas naphthalenivorans strain CJ2 bacterium dividing in two, each about 1 micron in diameter. The napthalene-eating ’bug’ was found in a coal-tar disposal site along the Hudson River by researchers from the NSF Microbial Observatory at Cornell University.
W.C. Ghiorse.
Copyright © 2003 PNAS.



Although naphthalene is not the most toxic component in coal tar, the microbiologists say their discovery might eventually help to speed the cleanup of hundreds of 19th and 20th century gasworks throughout the United States where the manufacture of gas from coal for homes and street lighting left a toxic legacy in the ground.

The National Science Foundation-funded research is reported in the online edition of Proceedings of the National Academy of Sciences (PNAS early edition, Oct. 27, 2003) by researchers working at the NSF Microbial Observatory at Cornell.


The naphthalene-eating bacterium, Polaromonas naphthalenivorans strain CJ2, was discovered in a 40-year-old municipal gasworks coal tar disposal site in South Glens Falls, N.Y., near the west bank of the Hudson River.

"Strain CJ2 alone won’t solve the coal tar problem because naphthalene is only one of the many organic chemicals involved. That’s why we’re going back to look for other microorganisms -- perhaps with similar gene sequences -- that might be biodegrading other toxins," says the article’s lead author, Eugene L. Madsen, associate professor of microbiology in Cornell’s College of Agriculture and Life Sciences. He says that naphthalene’s carcinogenic relatives in coal tar, known as polycylic aromatic hydrocarbons, are toxins that his research group hopes to degrade.

The use of SIP to identify pollutant-eating microbes is something like using the milk-mustache test to discover which child drank the milk. In the first successful field application of SIP in a contaminated site, the microbiologists released into the Hudson River coal tar waste a small amount of naphthalene-containing carbon-13, a stable isotope of carbon. Then they looked for two types of "milk-mustache evidence" proving that the naphthalene was being processed by microorganisms. Part of this evidence was that the bacteria in the sediment produced carbon dioxide (CO2) labeled with carbon-13. In addition, the same bacteria incorporated carbon-13 into their nucleic acids. After extraction of nucleic acids from the sediment, DNA testing revealed a signature DNA sequence for the bacteria responsible for biodegrading the naphthalene. Subsequently, the researchers were able to isolate from the sediment and grow a previously unknown naphthalene-degrading bacterium with a matching DNA signature. The microbiologists then grew the bacterium, dubbed CJ2, and added it to the coal tar sediment samples, where the microorganism accelerated the loss of naphthalene.

The harnessing of CJ2 is related to the 1997 discovery by Cornell microbiologists of a bacterium (Dehalococcoides ethenogenes ) that biodegrades the industrial cleaning compound trichlorethylene (TCE). Billions of D. ethenogenes microbes are now at work at a New Jersey Superfund site and other TCE-polluted locations.

"D. ethenogenes was discovered, almost accidentally, before we had the advantage of stable isotopic probing," Madsen observes, "Finding the bugs actually responsible for biodegradation processes among the millions of known and unknown species out there is always difficult, but we’ve shown that SIP makes the search a little easier." The SIP strategy had been tested before in the laboratory and in agricultural plots but never before in a genuine contaminated field site.

Other authors of the PNAS article, "Discovery of a novel bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment," include: Che Ok Jeon, currently a research scientist at the Korea Research Institute of Bioscience and Biotechnology; Woojun Park and Christopher DeRito, Cornell graduate students; P. Padmanabhan, research scientist at the National Environmental Engineering Research Institute, India; and J.R. Snape, senior microbiologist, AstraZeneca, England.

The research was conducted with cooperation from Niagara Mohawk Power Corp. and the New York State Department of Environmental Conservation.

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Oct03/coaltar_bug.hrs.html
http://www.micro.cornell.edu/NSF.Observatory.htm
http://www.news.cornell.edu/releases/Feb02/microbial_observatory.hrs.html

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>