Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New global treaty proposed to control climate change and improve health

16.10.2003


A global treaty focusing on intercontinental air pollution could be a better approach to controlling climate change than the Kyoto Protocol, according to a new scientific study. By cooperating to reduce pollutants like ozone and aerosols, countries could address their own regional health concerns, keep their downwind neighbors happy and reduce the threat of global warming in the process, claim the researchers.



The report appears in the Oct. 13 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

The Kyoto Protocol, drafted in 1997, was designed to provide binding commitments for reducing national emissions of greenhouse gases, with a special emphasis on carbon dioxide. Some countries, however, like the United States and China, have been reluctant to fully adopt the standards because of their potential economic burden.


In the new study, researchers from Columbia (N.Y.), Harvard and Princeton acknowledge the need to regulate carbon dioxide emissions, but they propose that a treaty dealing with air pollutants like ozone and aerosols, which can cause health problems, could be a better first step, uniting the interests of all countries involved.

"We suggest that it may be time to consider an international treaty to control air pollution on a hemispheric scale," says lead researcher Tracey Holloway, Ph.D. "The Kyoto Protocol addresses carbon dioxide emissions, which have no direct health impact, so they are not regulated currently as air pollutants." Holloway was at Columbia University when the study was done and is now with the University of Wisconsin-Madison.

An air pollution treaty that targets health-related pollutants "would tie in to regulations that most countries are already pursuing on a domestic basis," according to Holloway. One obvious example of this in the United States is the Clean Air Act, which regulates various pollutants, such as those that contribute to acid rain, smog and ozone depletion.

Holloway and her colleagues focused their research on ozone and aerosols. Both have lifetimes of about one week - long enough to be transported from Asia to the United States, as well as shorter distances across the Atlantic - and both pose health risks associated with respiratory disease, which Holloway says makes them more immediate concerns to countries than carbon dioxide.

But ozone and aerosols also contribute to large-scale climate problems, Holloway says, so the implications of controlling them go beyond air pollution into the realm of climate change.

The case for controlling greenhouse gases other than carbon dioxide was first presented three years ago by James Hansen of NASA’s Goddard Institute for Space Studies, according to Holloway.

Holloway believes an international air pollution treaty would not encounter the roadblocks that the Kyoto Protocol has faced. "It would be serving the self-interest of participating countries to address short-term health risks," she says. "Regulation could take shape without immediate reform of the domestic or international energy economy, and energy savings implemented to achieve air quality goals could have the win-win effect of reducing carbon dioxide emissions as well."

Holloway suggests a treaty based loosely on the 1979 Convention on Long-Range Transboundary Air Pollution (LRTAP), which initially addressed acid rain deposition in Europe through voluntary participation. The convention has since been amended to cover a broad range of pollutants, and participants include countries from Western and Eastern Europe as well as the United States and Canada.

Expanding such a treaty to include Asia would give the United States even more incentive to participate, Holloway says, since westerly winds spread pollution from that part of the world to North America. "Asian countries are already concerned about air pollution," she adds, "and are making significant strides toward domestic control."

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>