Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking fish by sonar to prevent over-fishing

14.10.2003


Marine researchers and scientists have long sought a practical way to track the position and migration of fish in the world’s oceans in order to provide research data for stock management and fish conservation.



Sigmur Gudbjornsson, Managing Director of Stjornu-Oddi, the Icelandic lead partner in EUREKA project E! 2326 GPSFISH, describes how they solved the problem by having ships “transmit by sonar GPS (global positioning satellite) data which is then stored on any fish that has been previously tagged within a 5 km range.”

As tagged cod, plaice or salmon swim, other sonar pings are recorded from vessels equipped with sonar developed by the Norwegian project partner, Simrad. The tag stores the sonar’s position at the time and date it was pinged. This turns the tagged fish into an important research instrument, gathering vital information on the species.


The GPSFISH project offers marine researchers a much needed tool to measure the movement of fish in the ocean, giving them new insight into fish behaviour, including migratory patterns, and improved estimates of fish stocks. This is important to prevent over-fishing and sustain stocks.

"It has been a huge task to miniaturise the tag, without compromising its performance, to make a product that can easily be carried by a medium-sized fish,” explains Gudbjornsson.

The fish are usually tagged on the exterior in parallel with the dorsal fin using tags that measure 46 x 15 mm and are made entirely from environmentally friendly components – including the tag’s housing which is a biocompatible material.

Dr Frank Knudsen, a fishery biologist at Simrad, describes how “all ships, including research vessels, fishing vessels and coast guards could transmit to tags whenever the sonar is not in regular use. Since a single ship can transmit pings to fish in over 100 km2 of ocean surface per hour this will give sufficient coverage.”

When the tags are recovered through commercial fisheries, the data can be uploaded into a computer and the migratory route of the fish through a whole year’s cycle can be reconstructed.

The system is currently being tested by the Institutes of Marine Research in Norway and Iceland to assess the number of tagged fish required to give a sufficiently accurate picture for their research. “Marine Research Institutes are the system’s future users and it is important to involve them in the project to analyse the feasibility of the system,” says Gudbjornsson.

“Working with the EUREKA project has given Stjornu-Oddi the opportunity to collaborate with Simrad and the Marine Institutes of two countries, to work across national borders, to seek support from national Research Councils, and to obtain results that matter,” says Gudbjornsson.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/gpsfish

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>