Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern climate, ecosystems driven by cycles of changing sunlight

26.09.2003


Emerging geochemical and biological evidence from Alaskan lake sediment suggests that slight variations in the sun’s intensity have affected sub-polar climate and ecosystems in a predictable fashion during the last 12,000 years.



Researchers at six institutions report the findings in the Sept. 26 issue of the journal Science. The data, they say, help to explain past changes on land and in freshwater ecosystems in northern latitudes and may provide information to help project the future.

The scientists identified cycles lasting 200, 435, 590 and 950 years during the Holocene Epoch, said principal investigator Feng Sheng Hu of the University of Illinois at Urbana-Champaign. The pattern of environmental variations they found also matches nicely with cyclic changes in solar irradiance and the extent of sea ice in the North Atlantic.


"We found natural cycles involving climate and ecosystems that seem to be related to weak solar cycles, which, if verified, could be an important factor to help us understand potential future changes of Earth’s climate," Hu said.

"Will changes in solar irradiation in the future mitigate or exacerbate global warming in the future? They may do both," said Hu, a professor in the plant biology and geology departments at Illinois. "A period of high solar irradiance on top of high levels of greenhouse gases could result in unprecedented warming."

The new data come from Arolik Lake sediment in the tundra region near the Ahklun Mountains, along the southwestern coast of Alaska. Hu and co-author Darrell Kaufman of Northern Arizona University in Flagstaff have conducted climate-change research in that region for more than a decade.

"To our knowledge, this is the first data set from the North Pacific high latitudes that has enough details to evaluate the effects of centennial scale solar cycles on climate and ecosystems," Hu said.

Sediment samples were tested for a variety of biological and chemical components related to environmental qualities, including their composition of biogenic silica, pollen and isotopes. The new data combined with recent findings of North Atlantic ice cover and production records of the cosmogenic nuclides beryllium-10 and carbon-14 strongly suggest that variations of Holocene climate on multi-centennial timescales reflect changes in solar intensity, the researchers wrote. Sun-ocean-climate linkages may account for similarities in the North Atlantic and North Pacific, Hu said.

In a Science paper published in 2001, one of Hu’s colleagues, Gerard Bond of Columbia University in New York, and nine other authors documented a close connection between North Atlantic drift ice and changes in the cosmogenic nuclides beryllium-10 and carbon-14. "Now, Hu’s findings in the North Pacific not only strongly corroborate the sun-climate connection we proposed, but they also imply that the response to solar variations may have involved much if not all of the Northern Hemisphere," Bond said.

Hu and colleagues linked the solar cycles to changes in lake productivity and plant densities, as well as variations in temperatures and moisture in the Alaskan tundra. The abundance of pollen from shrubs varied up to 25 percent between cycle peaks.

"When there have been high aquatic production and abundant shrubs, then warmer, more moist weather conditions are found at our site, and these conditions coincide with the presence of less drift ice in the North Atlantic and of higher solar irradiance," Hu said.

Data from biogenic silica (single-celled algae that reflect lake productivity), North Atlantic sea ice, and baryllium-10 and radiocarbon measures were "strikingly consistent" during the cycles, with the exception of conflicting correlations that occurred in a less-defined cycle that occurred between 5,000 and 6,000 years ago, the researchers wrote.

The presence of predictable cycles dating back thousands of years provides data that are not detectable in instrumental records, which are largely restricted to just the last 100 years, Hu said.


Illinois co-authors on the paper were microbiologist Sumiko Yoneji and graduate students David Nelson, Jian Tian and Benjamin Clegg. Other co-authors were Bond of Columbia University, Aldo Shemesh of the Weizmann Institute of Science in Israel, Yongsong Huang of Brown University and Thomas Brown of the Lawrence Livermore National Laboratory in California.

The David and Lucile Packard Foundation, National Science Foundation and Israeli Science Foundation funded the research through individual grants to the participants.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>