Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern climate, ecosystems driven by cycles of changing sunlight

26.09.2003


Emerging geochemical and biological evidence from Alaskan lake sediment suggests that slight variations in the sun’s intensity have affected sub-polar climate and ecosystems in a predictable fashion during the last 12,000 years.



Researchers at six institutions report the findings in the Sept. 26 issue of the journal Science. The data, they say, help to explain past changes on land and in freshwater ecosystems in northern latitudes and may provide information to help project the future.

The scientists identified cycles lasting 200, 435, 590 and 950 years during the Holocene Epoch, said principal investigator Feng Sheng Hu of the University of Illinois at Urbana-Champaign. The pattern of environmental variations they found also matches nicely with cyclic changes in solar irradiance and the extent of sea ice in the North Atlantic.


"We found natural cycles involving climate and ecosystems that seem to be related to weak solar cycles, which, if verified, could be an important factor to help us understand potential future changes of Earth’s climate," Hu said.

"Will changes in solar irradiation in the future mitigate or exacerbate global warming in the future? They may do both," said Hu, a professor in the plant biology and geology departments at Illinois. "A period of high solar irradiance on top of high levels of greenhouse gases could result in unprecedented warming."

The new data come from Arolik Lake sediment in the tundra region near the Ahklun Mountains, along the southwestern coast of Alaska. Hu and co-author Darrell Kaufman of Northern Arizona University in Flagstaff have conducted climate-change research in that region for more than a decade.

"To our knowledge, this is the first data set from the North Pacific high latitudes that has enough details to evaluate the effects of centennial scale solar cycles on climate and ecosystems," Hu said.

Sediment samples were tested for a variety of biological and chemical components related to environmental qualities, including their composition of biogenic silica, pollen and isotopes. The new data combined with recent findings of North Atlantic ice cover and production records of the cosmogenic nuclides beryllium-10 and carbon-14 strongly suggest that variations of Holocene climate on multi-centennial timescales reflect changes in solar intensity, the researchers wrote. Sun-ocean-climate linkages may account for similarities in the North Atlantic and North Pacific, Hu said.

In a Science paper published in 2001, one of Hu’s colleagues, Gerard Bond of Columbia University in New York, and nine other authors documented a close connection between North Atlantic drift ice and changes in the cosmogenic nuclides beryllium-10 and carbon-14. "Now, Hu’s findings in the North Pacific not only strongly corroborate the sun-climate connection we proposed, but they also imply that the response to solar variations may have involved much if not all of the Northern Hemisphere," Bond said.

Hu and colleagues linked the solar cycles to changes in lake productivity and plant densities, as well as variations in temperatures and moisture in the Alaskan tundra. The abundance of pollen from shrubs varied up to 25 percent between cycle peaks.

"When there have been high aquatic production and abundant shrubs, then warmer, more moist weather conditions are found at our site, and these conditions coincide with the presence of less drift ice in the North Atlantic and of higher solar irradiance," Hu said.

Data from biogenic silica (single-celled algae that reflect lake productivity), North Atlantic sea ice, and baryllium-10 and radiocarbon measures were "strikingly consistent" during the cycles, with the exception of conflicting correlations that occurred in a less-defined cycle that occurred between 5,000 and 6,000 years ago, the researchers wrote.

The presence of predictable cycles dating back thousands of years provides data that are not detectable in instrumental records, which are largely restricted to just the last 100 years, Hu said.


Illinois co-authors on the paper were microbiologist Sumiko Yoneji and graduate students David Nelson, Jian Tian and Benjamin Clegg. Other co-authors were Bond of Columbia University, Aldo Shemesh of the Weizmann Institute of Science in Israel, Yongsong Huang of Brown University and Thomas Brown of the Lawrence Livermore National Laboratory in California.

The David and Lucile Packard Foundation, National Science Foundation and Israeli Science Foundation funded the research through individual grants to the participants.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>