Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northern climate, ecosystems driven by cycles of changing sunlight

26.09.2003


Emerging geochemical and biological evidence from Alaskan lake sediment suggests that slight variations in the sun’s intensity have affected sub-polar climate and ecosystems in a predictable fashion during the last 12,000 years.



Researchers at six institutions report the findings in the Sept. 26 issue of the journal Science. The data, they say, help to explain past changes on land and in freshwater ecosystems in northern latitudes and may provide information to help project the future.

The scientists identified cycles lasting 200, 435, 590 and 950 years during the Holocene Epoch, said principal investigator Feng Sheng Hu of the University of Illinois at Urbana-Champaign. The pattern of environmental variations they found also matches nicely with cyclic changes in solar irradiance and the extent of sea ice in the North Atlantic.


"We found natural cycles involving climate and ecosystems that seem to be related to weak solar cycles, which, if verified, could be an important factor to help us understand potential future changes of Earth’s climate," Hu said.

"Will changes in solar irradiation in the future mitigate or exacerbate global warming in the future? They may do both," said Hu, a professor in the plant biology and geology departments at Illinois. "A period of high solar irradiance on top of high levels of greenhouse gases could result in unprecedented warming."

The new data come from Arolik Lake sediment in the tundra region near the Ahklun Mountains, along the southwestern coast of Alaska. Hu and co-author Darrell Kaufman of Northern Arizona University in Flagstaff have conducted climate-change research in that region for more than a decade.

"To our knowledge, this is the first data set from the North Pacific high latitudes that has enough details to evaluate the effects of centennial scale solar cycles on climate and ecosystems," Hu said.

Sediment samples were tested for a variety of biological and chemical components related to environmental qualities, including their composition of biogenic silica, pollen and isotopes. The new data combined with recent findings of North Atlantic ice cover and production records of the cosmogenic nuclides beryllium-10 and carbon-14 strongly suggest that variations of Holocene climate on multi-centennial timescales reflect changes in solar intensity, the researchers wrote. Sun-ocean-climate linkages may account for similarities in the North Atlantic and North Pacific, Hu said.

In a Science paper published in 2001, one of Hu’s colleagues, Gerard Bond of Columbia University in New York, and nine other authors documented a close connection between North Atlantic drift ice and changes in the cosmogenic nuclides beryllium-10 and carbon-14. "Now, Hu’s findings in the North Pacific not only strongly corroborate the sun-climate connection we proposed, but they also imply that the response to solar variations may have involved much if not all of the Northern Hemisphere," Bond said.

Hu and colleagues linked the solar cycles to changes in lake productivity and plant densities, as well as variations in temperatures and moisture in the Alaskan tundra. The abundance of pollen from shrubs varied up to 25 percent between cycle peaks.

"When there have been high aquatic production and abundant shrubs, then warmer, more moist weather conditions are found at our site, and these conditions coincide with the presence of less drift ice in the North Atlantic and of higher solar irradiance," Hu said.

Data from biogenic silica (single-celled algae that reflect lake productivity), North Atlantic sea ice, and baryllium-10 and radiocarbon measures were "strikingly consistent" during the cycles, with the exception of conflicting correlations that occurred in a less-defined cycle that occurred between 5,000 and 6,000 years ago, the researchers wrote.

The presence of predictable cycles dating back thousands of years provides data that are not detectable in instrumental records, which are largely restricted to just the last 100 years, Hu said.


Illinois co-authors on the paper were microbiologist Sumiko Yoneji and graduate students David Nelson, Jian Tian and Benjamin Clegg. Other co-authors were Bond of Columbia University, Aldo Shemesh of the Weizmann Institute of Science in Israel, Yongsong Huang of Brown University and Thomas Brown of the Lawrence Livermore National Laboratory in California.

The David and Lucile Packard Foundation, National Science Foundation and Israeli Science Foundation funded the research through individual grants to the participants.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>