Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cutting Australia’s greenhouse gas by half


More than half of Australia’s carbon dioxide emissions come from power stations. Storing these harmful gases underground can drastically reduce the rate of emission build-up in our atmosphere.

CSIRO’S Dr Lincoln Paterson says that it is possible to capture the gases emitted by these stationary sources, and strip out the carbon dioxide in order to pump it back underground.

"Oil, gas and coal all come from underground in the first place," says Paterson. "We’re looking at the feasibility of putting the carbon dioxide from these fuels back where it came from."

A team of scientists from the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), including CSIRO, Geoscience Australia and a number of universities is investigating ’geosequestration’ of carbon dioxide as a practical and feasible way of reducing Australia’s greenhouse gas emissions, as well as providing a lead to countries around the world grappling with the same problem.

"Carbon dioxide from vehicles and other moving sources has to be dealt with by developing hybrid or hydrogen powered vehicles," he says, "but for the massive existing stationary sources of emissions which underpin Australia’s industries, geosequestration provides a real opportunity to continue to operate efficiently while developing new technologies for an emission-free future."

Dr Paterson emphasises that geosequestration of carbon dioxide can never be more than part of the solution in the short- to mid-term.

"We are still dealing with the legacy of the industrial revolution, with coal and oil as the prime movers of industry," says Dr Paterson. "In the mid- to long-term, emerging technologies, possibly based on hydrogen, will power our society but even there, the first steps towards the hydrogen economy are likely to be based on fossil fuels."

"For some decades to come, putting the carbon back underground where it came from is a practical and potentially affordable answer to the problem."

CO2CRC researchers are working in close cooperation with scientists and engineers around the world, says Dr Paterson.

Geosequestration projects are already in operation in Europe, North Africa and Canada.

Nick Goldie | CSIRO
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>