Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor air pollution: new EU research reveals higher risks than previously thought

22.09.2003


Do you really know what you are breathing when sitting at home? Europeans spend 90% of their time indoors. But closed environments are not always the healthiest. The latest studies on human exposure to indoor pollution, released today by the European Commission at its Joint Research Centre (JRC) facilities in Ispra (Italy), reveal that indoor environments pose their own threats to health and, in some cases, can be at least twice as polluting as outdoor environments. Hundreds of volatile components have been detected and some of them are toxic, mutagenic or carcinogenic. The number of potential sources is enormous. For instance, up to 20% of Europeans suffer from asthma due to substances inhaled indoor. Tobacco smoke, asbestos, radon and benzene released inside buildings are prime suspects in the increase in cancer cases amongst the European population. The Commission is therefore developing sophisticated analytical methods to provide for a fingerprint of Volatile Organic Compounds (VOCs). Measurements are carried out, inter alia, at the EU INDOORTRON “environmental chamber”, and through a network of labs across Europe.

According to European Research Commissioner Philippe Busquin: “Traffic and smog are of course major causes of pollution, and we are studying and analysing their impact on human health. But unfortunately smoking and chemical substances sometimes follow us even behind closed doors – at home, at the office, in restaurants and bars. Under certain conditions, we can even be at risk while sitting in our sofa at home, not only while cycling downtown at the rush hour. We are therefore upgrading our indoor pollution monitoring and response capabilities, and we encourage policymakers and public authorities across Europe to address these issues and devise a consistent and effective strategy to solve the problem.”

Not safer at home



It is generally believed that buildings shelter us from most unpleasant and unhealthy outdoor conditions or pollutants. We spend, on average, 85-90% of our time indoors at home, in school, at work or during leisure time. However, reductions in ventilation rates to limit energy consumption and extensive use of new building materials are releasing chemical substances with unknown toxic properties.

Today the Joint Research Centre presented an insight into the potential causes of acute symptoms such as allergies, asthma, mucous irritation, headaches and tiredness. It is estimated, for instance, that up to 20% of the population suffers from asthma and other allergic diseases caused by substances typically present in indoor environments. In addition, indoor pollutants such as tobacco smoke, radon, asbestos and benzene may substantially contribute to the increase of cancer incidents in the population.

A breath of fresh air?

Results from measuring campaigns carried out by the Joint Research Centre in European cities clearly indicate that indoor concentrations of dangerous air pollutants (e.g. benzene) are often much higher than they are outdoors. Recent results indicate, for instance, that schoolchildren are exposed to high concentrations of pollutants (e.g. aromatic compounds), which might be particularly harmful for students with allergies, asthma or airway hyper-reactivity.

In the case of benzene and other aromatic compounds, overall exposure is at least twice that of urban pollution levels. This means that the indoor risk is doubled or even higher than that expected from existing levels of outdoor concentrations. This risk is increasingly associated with serious health problems for European citizens.

Tobacco still the main culprit

Environmental tobacco smoke (ETS), derived primarily from side-stream cigarette smoke emitted between puffs, is a major contributor to indoor air pollution wherever smoking occurs. Tests were undertaken to investigate the impact of various ventilation rates in indoor environments on the air concentration of tobacco components (burning products) during smoking at the Joint Research Centre’s environmental chamber, INDOORTRON (see below).

Preliminary evidence indicates that changes in ventilation rates during smoking do not have a significant influence on the air concentration of tobacco components. This means, in effect, that efforts to reduce indoor air pollution through higher ventilation rates in buildings and homes would hardly lead to a measurable improvement of indoor air quality.

INDOORTRON Environment Chamber

The 30-m3 INDOORTRON laboratory has been built by the Joint Research Centre’s site in Ispra, Italy. The INDOORTRON is a walk-in type environmental chamber, allowing for precise control of parameters such as temperature, relative humidity, air quality and exchange rate.

Within its large working space it is possible to:
• measure emissions from equipment;
• determine the release dynamics of materials;
• test models that predict pollutant concentrations;
• evaluate the efficiency of air-cleaning devices;
• carry out exposure measurement and assessment studies.
• Experiments conducted in the chamber include:
• source/sink relationships of pollutants;
• measurement of indoor air emissions from photocopy machines;
• testing of construction materials with photo-catalytic properties for the degradation of air pollutants;
• relationships between ventilation rates;
• Environmental Tobacco Smoke (ETS) distribution.

This INDOORTRON facility forms the lynchpin of the Joint Research Centre’s strategy towards monitoring Indoor Air Pollution, providing a highly controlled environment where air composition can accurately be measured and adjusted, without any influences from the surrounding atmosphere. This enables researchers to study, under highly controlled environmental conditions, indoor pollution episodes such as interior painting and use of other consumer products that have a potential impact on the health of European citizens.

The INDEX Project

The aim of the Joint Research Center’s Index project (“Critical appraisal of the setting and implementation of EU Indoor Exposure Limits”) is to create a network of European leading scientists in the area of indoor air pollution and its associated health impacts, in order to identify priorities and assess the need for a EU strategy and action plan.

Key issues
• setting up a list of priority substances to be regulated in Indoor Environments on the basis of health impact criteria;
• providing suggestions and recommendations on potential exposure limits for these substances;
• providing information on links with existing knowledge, ongoing studies, and legislative steps taking place worldwide.
Expected results
• review of exposure and dose response information, plus regulatory actions for selected indoor pollutants worldwide;
• prioritised list of indoor pollutants for regulation;
• risk characterisations for these pollutants;
• proposed exposure limits values or other exposure control regulations for these pollutants;
• assessment of essential research needs for pollutants with high-risk potential, but insufficient information for setting regulatory objectives or selecting regulatory options.

The way ahead

Faced with a clear lack of reliable data at a European level, the Joint Research Centre is taking a leading role in developing new analytical approaches, comparison and harmonisation methods, and conducting monitoring surveys around the Member States to quantify contaminants. This is key to providing sound data as the basis for further exposure assessments to safeguard the health of our citizens.

Fabio Fabbi | European Commission
Further information:
http://www.jrc.cec.eu.int/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>