Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique two-part macroemulsion offers new approach to cleaning up contaminated aquifers

18.09.2003


Environmental engineering researchers have developed a novel two-part approach for cleaning up toxic chlorinated solvents spilled into underground water supplies from former dry cleaning and industrial operations.



The patent-pending technique, which uses a macroemulsion composed of alcohol and food-grade surfactants, simultaneously reduces the density of the pollutant – to keep it from sinking farther into the groundwater – and helps separate it from soil particles so it can be flushed out. Known as "density modified displacement," the approach could cut the cost of environmental remediation by reducing both the time required for clean up and the amount of contaminated effluent that must be treated.

The technique was reported in the August 15 online version of the journal Environmental Science and Technology, and will be published in the journal’s September 15th print issue. Researchers from the Georgia Institute of Technology, the University of Michigan and the University of Oklahoma participated in the research, which was sponsored by the U.S. Environmental Protection Agency (EPA).


"We’re trying to make remediation of contaminated groundwater more efficient, because it is now largely driven by economics," said Kurt Pennell, an associate professor in Georgia Tech’s School of Civil and Environmental Engineering. "The idea is to make this process so efficient that the cost of cleaning up a site is less expensive than traditional approaches which rely on groundwater extraction and long-term monitoring."

The technique offers a new approach to removing dense nonaqueous phase liquids (DNAPLs), including tetrachloroethane (PCE), trichloroethene (TCE) and chlorobenzene (CB), heavier-than-water compounds. Relatively stable chemicals that don’t readily degrade, their concentrations in groundwater must be kept to a few parts-per-billion (ppb) to meet environmental standards.

"A single 55-gallon drum of one of the compounds can contaminate hundreds of thousands of gallons of groundwater," Pennell noted.

Established remediation techniques (pump and treat) often rely on pumping large amounts of contaminated water out of the ground, flushing the pollutants with it. However, these techniques require large volumes of water and may need to be operated for many years. The cost of treating the contaminated water and the time required make this approach very expensive -- and serves only to contain the contaminated groundwater.

The approach developed by the Georgia Tech team could allow remediation engineers to directly address pollution mass removal, with recovery rates exceeding 90 percent.

"Our approach is to aggressively treat the source zone where the actual spill occurred and remove the compound, then separate and treat or recycle it above ground," Pennell explained. "We are trying to remove the long-term source of groundwater contamination in a manner that will produce the most results for the least cost. It’s generally not economically feasible to treat the entire aquifer."

One issue that all such solvent remediation efforts must address is containing the problem. Because these chlorinated compounds are heavier than water, removal efforts can inadvertently drive them deeper into the ground if underground water supplies lack natural boundaries such as impermeable clay or bedrock.

To keep the dense nonaqueous phase liquids (DNAPL) from flowing deeper into the earth, engineers have injected alcohols such as n-butanol into the pollution mass to lower its density. They have also injected surfactant chemicals – food or pharmaceutical quality agents similar to those used in whipped toppings and shampoos – which reduce the interfacial tension to separate the solvent from soil particles.

The patent-pending technique developed by Pennell and collaborators C. Andrew Ramsburg, Tohren C.G. Kibbey and Kim F. Hayes combines both approaches, making the compounds lighter and their removal from the soil easier.

In laboratory studies using a test cell to simulate underground conditions, the researchers first flowed their macroemulsion through a layer of trichloroethene, then flushed it out with water, removing 93% of the solvent. Most of the surfactants and alcohol are removed from the soil; the small amounts that may remain will encourage biological processes to break down remaining contaminants over a longer period of time, Pennell said.

In addition to the alcohol, the process uses a variety of surfactant chemicals, including Polysorbate-20, Tween or Span. Because they are produced in large volumes for other purposes, these materials can cost as little as $1.50 per pound.

Based on the promising laboratory results and interest from the remediation industry, Pennell hopes to attract a partner to begin field testing the technique.

"There is not an aggressive attitude toward cleaning up these spills," he said. "It’s an uphill battle, and there are still a lot of old dry cleaner sites out there. But the contamination is not going to disappear by itself."

Pennell sees the technique offering an efficient and cost-effective option for remediation specialists, who must choose the best approach tailored for each contamination scenario. "There’s not really a silver bullet in environmental remediation," he said. "It’s just not easy to clean up contaminants in the ground and under buildings."


###
Technical Contact: Kurt Pennell (404-894-9365); E-mail: (kurt.pennell@ce.gatech.edu).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>