Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique two-part macroemulsion offers new approach to cleaning up contaminated aquifers

18.09.2003


Environmental engineering researchers have developed a novel two-part approach for cleaning up toxic chlorinated solvents spilled into underground water supplies from former dry cleaning and industrial operations.



The patent-pending technique, which uses a macroemulsion composed of alcohol and food-grade surfactants, simultaneously reduces the density of the pollutant – to keep it from sinking farther into the groundwater – and helps separate it from soil particles so it can be flushed out. Known as "density modified displacement," the approach could cut the cost of environmental remediation by reducing both the time required for clean up and the amount of contaminated effluent that must be treated.

The technique was reported in the August 15 online version of the journal Environmental Science and Technology, and will be published in the journal’s September 15th print issue. Researchers from the Georgia Institute of Technology, the University of Michigan and the University of Oklahoma participated in the research, which was sponsored by the U.S. Environmental Protection Agency (EPA).


"We’re trying to make remediation of contaminated groundwater more efficient, because it is now largely driven by economics," said Kurt Pennell, an associate professor in Georgia Tech’s School of Civil and Environmental Engineering. "The idea is to make this process so efficient that the cost of cleaning up a site is less expensive than traditional approaches which rely on groundwater extraction and long-term monitoring."

The technique offers a new approach to removing dense nonaqueous phase liquids (DNAPLs), including tetrachloroethane (PCE), trichloroethene (TCE) and chlorobenzene (CB), heavier-than-water compounds. Relatively stable chemicals that don’t readily degrade, their concentrations in groundwater must be kept to a few parts-per-billion (ppb) to meet environmental standards.

"A single 55-gallon drum of one of the compounds can contaminate hundreds of thousands of gallons of groundwater," Pennell noted.

Established remediation techniques (pump and treat) often rely on pumping large amounts of contaminated water out of the ground, flushing the pollutants with it. However, these techniques require large volumes of water and may need to be operated for many years. The cost of treating the contaminated water and the time required make this approach very expensive -- and serves only to contain the contaminated groundwater.

The approach developed by the Georgia Tech team could allow remediation engineers to directly address pollution mass removal, with recovery rates exceeding 90 percent.

"Our approach is to aggressively treat the source zone where the actual spill occurred and remove the compound, then separate and treat or recycle it above ground," Pennell explained. "We are trying to remove the long-term source of groundwater contamination in a manner that will produce the most results for the least cost. It’s generally not economically feasible to treat the entire aquifer."

One issue that all such solvent remediation efforts must address is containing the problem. Because these chlorinated compounds are heavier than water, removal efforts can inadvertently drive them deeper into the ground if underground water supplies lack natural boundaries such as impermeable clay or bedrock.

To keep the dense nonaqueous phase liquids (DNAPL) from flowing deeper into the earth, engineers have injected alcohols such as n-butanol into the pollution mass to lower its density. They have also injected surfactant chemicals – food or pharmaceutical quality agents similar to those used in whipped toppings and shampoos – which reduce the interfacial tension to separate the solvent from soil particles.

The patent-pending technique developed by Pennell and collaborators C. Andrew Ramsburg, Tohren C.G. Kibbey and Kim F. Hayes combines both approaches, making the compounds lighter and their removal from the soil easier.

In laboratory studies using a test cell to simulate underground conditions, the researchers first flowed their macroemulsion through a layer of trichloroethene, then flushed it out with water, removing 93% of the solvent. Most of the surfactants and alcohol are removed from the soil; the small amounts that may remain will encourage biological processes to break down remaining contaminants over a longer period of time, Pennell said.

In addition to the alcohol, the process uses a variety of surfactant chemicals, including Polysorbate-20, Tween or Span. Because they are produced in large volumes for other purposes, these materials can cost as little as $1.50 per pound.

Based on the promising laboratory results and interest from the remediation industry, Pennell hopes to attract a partner to begin field testing the technique.

"There is not an aggressive attitude toward cleaning up these spills," he said. "It’s an uphill battle, and there are still a lot of old dry cleaner sites out there. But the contamination is not going to disappear by itself."

Pennell sees the technique offering an efficient and cost-effective option for remediation specialists, who must choose the best approach tailored for each contamination scenario. "There’s not really a silver bullet in environmental remediation," he said. "It’s just not easy to clean up contaminants in the ground and under buildings."


###
Technical Contact: Kurt Pennell (404-894-9365); E-mail: (kurt.pennell@ce.gatech.edu).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>