Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique two-part macroemulsion offers new approach to cleaning up contaminated aquifers

18.09.2003


Environmental engineering researchers have developed a novel two-part approach for cleaning up toxic chlorinated solvents spilled into underground water supplies from former dry cleaning and industrial operations.



The patent-pending technique, which uses a macroemulsion composed of alcohol and food-grade surfactants, simultaneously reduces the density of the pollutant – to keep it from sinking farther into the groundwater – and helps separate it from soil particles so it can be flushed out. Known as "density modified displacement," the approach could cut the cost of environmental remediation by reducing both the time required for clean up and the amount of contaminated effluent that must be treated.

The technique was reported in the August 15 online version of the journal Environmental Science and Technology, and will be published in the journal’s September 15th print issue. Researchers from the Georgia Institute of Technology, the University of Michigan and the University of Oklahoma participated in the research, which was sponsored by the U.S. Environmental Protection Agency (EPA).


"We’re trying to make remediation of contaminated groundwater more efficient, because it is now largely driven by economics," said Kurt Pennell, an associate professor in Georgia Tech’s School of Civil and Environmental Engineering. "The idea is to make this process so efficient that the cost of cleaning up a site is less expensive than traditional approaches which rely on groundwater extraction and long-term monitoring."

The technique offers a new approach to removing dense nonaqueous phase liquids (DNAPLs), including tetrachloroethane (PCE), trichloroethene (TCE) and chlorobenzene (CB), heavier-than-water compounds. Relatively stable chemicals that don’t readily degrade, their concentrations in groundwater must be kept to a few parts-per-billion (ppb) to meet environmental standards.

"A single 55-gallon drum of one of the compounds can contaminate hundreds of thousands of gallons of groundwater," Pennell noted.

Established remediation techniques (pump and treat) often rely on pumping large amounts of contaminated water out of the ground, flushing the pollutants with it. However, these techniques require large volumes of water and may need to be operated for many years. The cost of treating the contaminated water and the time required make this approach very expensive -- and serves only to contain the contaminated groundwater.

The approach developed by the Georgia Tech team could allow remediation engineers to directly address pollution mass removal, with recovery rates exceeding 90 percent.

"Our approach is to aggressively treat the source zone where the actual spill occurred and remove the compound, then separate and treat or recycle it above ground," Pennell explained. "We are trying to remove the long-term source of groundwater contamination in a manner that will produce the most results for the least cost. It’s generally not economically feasible to treat the entire aquifer."

One issue that all such solvent remediation efforts must address is containing the problem. Because these chlorinated compounds are heavier than water, removal efforts can inadvertently drive them deeper into the ground if underground water supplies lack natural boundaries such as impermeable clay or bedrock.

To keep the dense nonaqueous phase liquids (DNAPL) from flowing deeper into the earth, engineers have injected alcohols such as n-butanol into the pollution mass to lower its density. They have also injected surfactant chemicals – food or pharmaceutical quality agents similar to those used in whipped toppings and shampoos – which reduce the interfacial tension to separate the solvent from soil particles.

The patent-pending technique developed by Pennell and collaborators C. Andrew Ramsburg, Tohren C.G. Kibbey and Kim F. Hayes combines both approaches, making the compounds lighter and their removal from the soil easier.

In laboratory studies using a test cell to simulate underground conditions, the researchers first flowed their macroemulsion through a layer of trichloroethene, then flushed it out with water, removing 93% of the solvent. Most of the surfactants and alcohol are removed from the soil; the small amounts that may remain will encourage biological processes to break down remaining contaminants over a longer period of time, Pennell said.

In addition to the alcohol, the process uses a variety of surfactant chemicals, including Polysorbate-20, Tween or Span. Because they are produced in large volumes for other purposes, these materials can cost as little as $1.50 per pound.

Based on the promising laboratory results and interest from the remediation industry, Pennell hopes to attract a partner to begin field testing the technique.

"There is not an aggressive attitude toward cleaning up these spills," he said. "It’s an uphill battle, and there are still a lot of old dry cleaner sites out there. But the contamination is not going to disappear by itself."

Pennell sees the technique offering an efficient and cost-effective option for remediation specialists, who must choose the best approach tailored for each contamination scenario. "There’s not really a silver bullet in environmental remediation," he said. "It’s just not easy to clean up contaminants in the ground and under buildings."


###
Technical Contact: Kurt Pennell (404-894-9365); E-mail: (kurt.pennell@ce.gatech.edu).

John Toon | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>