Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Plant Life Slows down and Absorbs Less Carbon

17.09.2003


Distributions of Ocean Net Primary Productivity (1997-2002)

The image shows ocean net primary productivity distributions from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the OrbView-2 satellite (1997-2002). The units are in grams of Carbon per meter squared per year. Light gray areas indicate missing data. Credit: Images by Robert Simmon, NASA GSFC Earth Observatory, based on data provided by Watson Gregg, NASA GSFC.


Difference in Distributions of Ocean Net Primary Productivity between 1997-2002 and 1979-1986 Data

The image shows the difference in ocean net primary productivity between the SeaWiFS era (1997-2002) and the CZCS era (1979-1986). To obtain the differences, the CZCS results were subtracted from the SeaWiFS results. The units are in grams of Carbon per meter squared per year. Light gray areas indicate missing data. Credit: Images by Robert Simmon, NASA GSFC Earth Observatory, based on data provided by Watson Gregg, NASA GSFC.

Plant life in the world’s oceans has become less productive since the early 1980s, absorbing less carbon, which may in turn impact the Earth’s carbon cycle, according to a study that combines NASA satellite data with NOAA surface observations of marine plants.

Microscopic ocean plants called phytoplankton account for about half the transfer of carbon dioxide (CO2) from the environment into plant cells by photosynthesis. Land plants pull in the other half. In the atmosphere, CO2 is a heat- trapping greenhouse gas.

Watson Gregg, a NASA GSFC researcher and lead author of the study, finds that the oceans’ net primary productivity (NPP) has declined more than 6 percent globally over the last two decades, possibly as a result of climatic changes. NPP is the rate at which plant cells take in CO2 during photosynthesis from sunlight, using the carbon for growth. The NASA funded study appears in a recent issue of Geophysical Research Letters.

"This research shows ocean primary productivity is declining, and it may be a result of climate changes such as increased temperatures and decreased iron deposition into parts of the oceans. This has major implications for the global carbon cycle," Gregg said. Iron from trans-continental dust clouds is an important nutrient for phytoplankton, and when lacking can keep populations from growing.

Gregg and colleagues used two datasets from NASA satellites: one from the Coastal Zone Color Scanner aboard NASA’s Nimbus- 7 satellite (1979-1986); and another from Sea-viewing Wide Field-of-view Sensor data on the OrbView-2 satellite (1997- 2002).

The satellites monitor the green pigment in plants, or chlorophyll, which leads to estimates of phytoplankton amounts. The older data was reanalyzed to conform to modern standards, which helped make the two data records consistent with each other. The sets were blended with surface data from NOAA research vessels and buoys to reduce errors in the satellite records and to create an improved estimate of NPP.

The authors found nearly 70 percent of the NPP global decline per decade occurred in the high latitudes (above 30 degrees). In the North Pacific and North Atlantic basins, phytoplankton bloom rapidly in high concentrations in spring, leading to shorter, more intense lifecycles. In these areas, plankton quickly dies and can sink to the ocean floor, creating a potential pathway of carbon from the atmosphere into the deep ocean.

In the high latitudes, rates of plankton growth declined by 7 percent in the North Atlantic basin, 9 percent in the North Pacific basin, and 10 percent in the Antarctic basin when comparing the 1980s dataset with the late 1990s observations.

The decline in global ocean NPP corresponds with an increase in global sea surface temperatures of 0.36 degrees Fahrenheit (F) (0.2 degrees Celsius (C)) over the last 20 years. Warmer water creates more distinct ocean layers and limits mixing of deeper nutrient-rich cooler water with warmer surface water. The lack of rising nutrients keeps phytoplankton growth in check at the surface.

The North Atlantic and North Pacific experienced major increases in sea surface temperatures: 0.7 degrees C (1.26 F) and 0.4 degrees C (0.72 F) respectively. In the Antarctic, there was less warming, but lower NPP was associated with increased surface winds. These winds caused plankton to mix downward, cutting exposure to sunlight.

Also, the amount of iron deposited from desert dust clouds into the global oceans decreased by 25 percent over two decades. These dust clouds blow across the oceans. Reductions in NPP in the South Pacific were associated with a 35 percent decline in atmospheric iron deposition.

"These results illustrate the complexities of climate change, since there may be one or more processes, such as changes in temperature and the intensity of winds, influencing how much carbon dioxide is taken up by photosynthesis in the oceans," said co-author Margarita Conkright, a scientist at NOAA’s National Oceanographic Data Center, Silver Spring, Md.

Other recent NASA findings have shown land cover on Earth has actually been greening. For information and images on the Internet, visit: www.nasa.gov/home/hqnews/2003/jun/HQ_03182_green_garden.html

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0815oceancarbon.html
http://www.nasa.gov/home/hqnews/2003/jun/HQ_03182_green_garden.html

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>