Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat chance for hosts

09.09.2003


New study shows parasitic flatworms take destiny by the tail



In the research article "Larval swimming overpowers turbulent mixing and facilitates transmission of a marine parasite," appearing in the September issue of the Ecological Society of America’s journal Ecology, Jonathan Fingerut of the University of California-Los Angeles and colleagues describe the results of the first study to examine larval behavior versus passive-transport processes under natural and simulated water flow conditions.

H. rhigedana is one of the most common parasitic flatworms found in southern California. Sexual reproduction takes place in definitive host birds, which defecate the parasite’s eggs into marshes. The first swimming larval stage (miracidia) infect the California horn snail, causing castration and other sublethal effects. Asexual reproduction ensues, producing tens of free-swimming cercariae per snail per day, which encyst on other snails and crabs as second intermediate hosts. Birds which eat the snails and crabs complete the parasite’s life cycle.


Fingerut and his colleagues Cheryl Ann Zimmer and Richard Zimmer, also of UC-Los Angeles, wanted to determine what explains the unusually high transmission rate of H. rhigedana’s cercariae (second larval stage). The larvae encyst up to 100 percent of the local snail and crab second intermediate hosts, an especially astonishing feat since this larval stage has but four hours to locate and infect its host.

The researchers examined the range of variation and effect on larval swimming of relevant physical factors (light, temperature, salinity and water flow). They also used new laser and digital video imaging technologies to identify active versus passive transport of the larvae.

"In our still water experiments, we found that exposure to light caused cercariae to swim straight toward the bottom of the water body where they were likely to encounter their hosts," says Fingerut. "And while salinity had no impact on either swim speed or direction, a 33 percent increase in water temperature led to a 71 percent increase in the larvae’s swim speeds, bringing the larvae to the bottom faster."

When the researchers looked at the same variables in slow-moving water conditions, they found similar results: the cercariae swam determinedly towards the bottom, prevailing over the slow-moving water currents. However, fast-moving water bodies overwhelmed the larvae’s ability to control their movements and they were distributed throughout the water column, much like passive particles. Water temperature had no effect in this setting.

"Our study indicates that whether adaptive or fortuitous, parasite transmission is largely controlled by the cercariae and not by the vagaries of flow," the investigators conclude.


Founded in 1915, the Ecological Society of America (ESA) is a scientific, non-profit, organization with 8000 members. Through ESA reports, journals, membership research, and expert testimony to Congress, ESA seeks to promote the responsible application of ecological data and principles to the solution of environmental problems. For more information about the Society and its activities, access ESA’s web site at: www.esa.org.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>