Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat chance for hosts

09.09.2003


New study shows parasitic flatworms take destiny by the tail



In the research article "Larval swimming overpowers turbulent mixing and facilitates transmission of a marine parasite," appearing in the September issue of the Ecological Society of America’s journal Ecology, Jonathan Fingerut of the University of California-Los Angeles and colleagues describe the results of the first study to examine larval behavior versus passive-transport processes under natural and simulated water flow conditions.

H. rhigedana is one of the most common parasitic flatworms found in southern California. Sexual reproduction takes place in definitive host birds, which defecate the parasite’s eggs into marshes. The first swimming larval stage (miracidia) infect the California horn snail, causing castration and other sublethal effects. Asexual reproduction ensues, producing tens of free-swimming cercariae per snail per day, which encyst on other snails and crabs as second intermediate hosts. Birds which eat the snails and crabs complete the parasite’s life cycle.


Fingerut and his colleagues Cheryl Ann Zimmer and Richard Zimmer, also of UC-Los Angeles, wanted to determine what explains the unusually high transmission rate of H. rhigedana’s cercariae (second larval stage). The larvae encyst up to 100 percent of the local snail and crab second intermediate hosts, an especially astonishing feat since this larval stage has but four hours to locate and infect its host.

The researchers examined the range of variation and effect on larval swimming of relevant physical factors (light, temperature, salinity and water flow). They also used new laser and digital video imaging technologies to identify active versus passive transport of the larvae.

"In our still water experiments, we found that exposure to light caused cercariae to swim straight toward the bottom of the water body where they were likely to encounter their hosts," says Fingerut. "And while salinity had no impact on either swim speed or direction, a 33 percent increase in water temperature led to a 71 percent increase in the larvae’s swim speeds, bringing the larvae to the bottom faster."

When the researchers looked at the same variables in slow-moving water conditions, they found similar results: the cercariae swam determinedly towards the bottom, prevailing over the slow-moving water currents. However, fast-moving water bodies overwhelmed the larvae’s ability to control their movements and they were distributed throughout the water column, much like passive particles. Water temperature had no effect in this setting.

"Our study indicates that whether adaptive or fortuitous, parasite transmission is largely controlled by the cercariae and not by the vagaries of flow," the investigators conclude.


Founded in 1915, the Ecological Society of America (ESA) is a scientific, non-profit, organization with 8000 members. Through ESA reports, journals, membership research, and expert testimony to Congress, ESA seeks to promote the responsible application of ecological data and principles to the solution of environmental problems. For more information about the Society and its activities, access ESA’s web site at: www.esa.org.

Annie Drinkard | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>