Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes active in Colorado snows fuel tundra ecosystem

05.09.2003


Populations of fungi blanketed by Colorado’s snows are more active and diverse than previously thought, and are likely responsible for the productivity of the tundra ecosystem they are a part of, according to findings by scientists funded through the National Science Foundation (NSF)’s Long-Term Ecological Research (LTER) and Microbial Observatories programs. The researchers have published their results in this week’s issue of the journal Science.


"Microbial-level investigations are integral to developing an overall understanding of the alpine ecology at Niwot Ridge LTER site in the Colorado front range."
Photo by Timothy Seastedt, Niwot LTER



Christopher Schadt, now of the Department of Energy’s Oak Ridge National Laboratory in Tennessee and a former graduate student at the University of Colorado at Boulder, said "the discovery should help scientists gain greater insight into decomposition rates, carbon cycles and the roles of individual fungi in those processes." Surprisingly, the number of active microorganisms in tundra soils, for at least the top 10 centimeters, (about four inches) peaks when the soils are covered with snow. Schadt and colleagues performed their research at the Niwot Ridge, Colo., LTER site. Niwot Ridge is located some 12,000 feet atop the Rocky Mountains.

"The finding that microorganisms are interacting with tundra soils to a great extent highlights the important role of the snowpack in creating a unique and crucial environment in tundra ecosystems in Colorado and likely in other locations that are covered with snow for long periods of time in winter," said Henry Gholz, LTER program director at NSF.


Metabolism of snow-covered microbes is an important biogeochemical "sink," or way of storing, nitrogen. "The subsequent release in spring of nitrogen from the microbes’ metabolism is a major contributor to the relatively high productivity during the short growing season in the tundra," said Steven Schmidt of the University of Colorado at Boulder, a co-author of the Science paper, and leader of the research team.

Schadt, Schmidt, and colleagues Andrew Martin of the University of Colorado and David Lipson of San Diego State University also found that fungi account for most of the biomass of the tundra, which undergoes significant seasonal changes. The researchers discovered that about 40 percent of the fungi in their samples were previously unknown. DNA sequencing enabled them to identify fungi that may hold answers to other questions about the tundra ecology in Colorado and in other locations around the world.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>