Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recycled carpet waste

04.09.2003


The University of Bradford and the Bolton Institute have been given more than £150,000 for a joint project to consider ways to recycle carpet waste into novel underlays.



Part of the funding, given to the University’s School of Engineering, Design and Technology, will be used will help investigate and test the characteristics of different materials.

The two-year project will utilise industrial carpet process waste resulting from edge cuts, mismatches and rejects to produce underlays.


The underlays need to be flexible, durable and simple to produce and would possess vibro-acoustic and thermal insulation properties which would widen the scope of their application whilst providing a cheap alternative to otherwise expensive specialised materials.

Senior Lecturer in Environmental Acoustics in the School of Engineering, Design and Technology, Dr Kirill Horoshenkov, said: “The growth in demand for carpets is expected to rise at the rate of 2.5% per year. Europe alone produces nearly 1 billion square metres of carpet, while the UK ranked 5th internationally and was responsible for 150 million square metres of carpet production. In the UK the carpet industry accounts for £935m of income each year. About 7%, or £65m, of would-be-extra earning is annually lost in the form of waste produced during manufacturing processes and fittings.

“Most of this waste is destined for landfill at an additional cost of £750K to the manufacturer and the taxpayer. Given the increasing public concerns for the environment and scarcity of suitable landfill sites, these figures are likely to rise in years to come. Incineration as a second alternative is equally unacceptable due to large releases of toxic fumes to the atmosphere and its associated hazards.

“This study will therefore help to reduce this unnecessary waste while providing a low-cost alternative to underlays currently on the market. The recycled material can be easily integrated into many existing commercial products and the technology itself is expected to improve the sustainability and competitiveness of the UK’’s carpet manufacturing sector.”

It is anticipated that the material would conform to British Standards applicable to both underlays and acoustic arena and would compete comfortably with commercially available materials of similar calibre.

The project is supported by a £156,000 grant from the WRAP (DEFRA/DTI Waste Recycling Action Programme) and several multinational manufacturers of carpet and underlays. Other industrial partners include Armacell UK Limited and the University spin-off company, Acoutechs. The project employs two post-doctoral research fellows, Dr Mark Swift and Dr Ian Rushforth.

Emma Scales | alfa
Further information:
http://www.bradford.ac.uk/corpcomms/pressreleases

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>