Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Where there’s muck there’s grass


The oldest ecological experiment in the world, set up almost 150 years ago to see whether inorganic fertilisers could produce more grass than traditional animal manures, is becoming an important source of evidence on the impact of climate change on genetic variation in plants.

Speaking at the British Ecological Society’s Annual Meeting, being held at Manchester Metropolitan University on 9-11 September 2003, Professor Jonathan Silvertown of the Open University will explain what the Park Grass Experiment has taught ecologists over the past century and how this uniquely long dataset has shed new light on many ecological problems, including the link between the genetics and population dynamics of species.

Set up in 1856, three years before Charles Darwin published his Origin of Species, the Park Grass Experiment is a hay meadow at Rothamsted Research to which a series of different fertiliser treatments have been applied annually. As well as measuring the yield of hay from each plot, ecologists have also measured the change in species composition in the meadow, and kept samples of the hay cut from it over the years.

Professor Silvertown will tell the meeting: “Long-term observations are increasingly important to understanding climate change and now show beyond any reasonable doubt that the warming of the Earth’s climate over the course of the 20th century has had detectable and widespread effects on the distribution, abundance and seasonal behaviour of plant and animal species. Climate change not only alters the abundance and behaviour of species, but also the evolutionary pressures acting upon them and so we can expect natural selection to alter the genetic composition of our native plants and animals.”

“Our best tool for predicting what may happen in the next 50 years is what has happened over that last 100 years in response to historical droughts etc. Apart from the Park Grass Experiment, very few natural habitats have been under continuous study for this length of time. By studying 20th century records of plant species found within the experiment and combining these with experiments on the population dynamics and genetics of plants growing there, we have found that species that have a self-fertilising mating system seem to be more prone to local extinction than species that reproduce by outcrossing. We think that this may be because populations of self-fertilising species have only limited genetic variation and that this makes it more difficult for them to adapt to changing conditions. This is some of the best evidence yet that the genetics of natural plant populations influences their ability to survive over the long term.”

Professor Silvertown is now planning to analyse the DNA of hay samples cut and stored more than 50 years before Crick and Watson discovered the structure of DNA. “We are now investigating the exciting possibility that we can look retrospectively at the genetics of plants that grew in the experiment over 100 years ago. This is being done by extracting DNA from old samples of hay that have been stored at Rothamsted. Our aim is to develop a genetic record for the plants at Park Grass that will parallel the 140 year-long ecological record which we already have. When we can compare the two records, we should be able to see how climatic changes that influence the abundance of species alter genetic variation, with possible consequences for the fate of plant species in the future,” he says.

Professor Silvertown will present his full findings at 10:20 on Thursday 11 September 2003.

Becky Allen | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>