Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detoxifying Sediments With Electrons and UV Light

28.08.2003


The concentration of certain toxic organic chemicals in waterway sediments can be reduced by 83 percent using electron beams—the same technology already used to decontaminate mail—scientists from the National Institute of Standards and Technology (NIST) and the University of Maryland will report in the Sept. 1 issue of Environmental Science & Technology. In an additional series of laboratory experiments, the team found that ultraviolet light also can substantially reduce the concentration of these chemicals.



The results are significant because sediments, soupy mixtures of water and particles of various sizes, arenotoriously difficult and expensive to decontaminate. Further, electron beams and ultraviolet light effectively detoxified the banned chemicals known collectively as polychlorinated biphenyls, or PCBs, which can get into the food chain and increase the risk of cancer in humans. Waterways such as the Hudson River have bottom sediments heavily contaminated with PCBs. However, whether electron beams and ultraviolet light are practical decontamination techniques will depend on cost-effectiveness comparisons to existing methods, such as chemical treatment and incineration. In addition, issues such as availability of electron beams will need to be resolved. The scientists used a beam at the University of Maryland for the recent studies.

Electron beams and ultraviolet light remove chlorine ions (charged atoms) from PCBs, which reduces toxic-ity and enhances prospects for biodegradation of the remaining material by living organisms. The scientists evaluated the effectiveness of the treatment methods in removing PCBs from a NIST Standard Reference Material containing sediments with carefully measured amounts of contaminants. Research continues on additives and conditions that might enhance the decontamination processes. The research is funded by NIST, the university, and the Maryland Water Resources Center.


Laura Ost, | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0827.htm#uv

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>