Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU ecologist says defense by plants to disease may leave them vulnerable to insect attack

26.08.2003


Some of the defenses plants use to fight off disease leave them more susceptible to attack by insects, according to a Don Cipollini, Ph.D., a chemical ecologist at Wright State University.



Cipollini, an assistant professor of biological sciences, will present a research paper on this topic at the annual meeting of the Ecological Society of America in Savannah, Ga., on Tuesday, Aug. 5. Some 3,000 national and international scientists are expected to attend the meeting.

“Plant Resistance and Susceptibility” is the title of the session in which Cipollini will present his paper. “My research shows that induction of a particular plant response to pathogens that results in enhanced resistance to disease (termed systemic acquired resistance) can nullify the induction of resistance to feeding by some insects,” he explained. “This interaction can result in the unfortunate tradeoff where plants become resistant to some diseases, but more susceptible to some insects. This phenomenon represents an ecological cost of resistance.”


His study, done in collaboration with researchers at the University of Chicago, illustrates the effects of salicylate, a natural plant chemical, on resistance of the plant species Arabidopsis thaliana to the beet armyworm larvae (Spodoptera exigua). Salicylate is chemically similar to the aspirin that humans take, and it functions in nature to heighten plant defenses to pathogens, or disease-causing microbes. When applied to plants, salicylate can interfere with the induction of resistance to some insects, however, leaving them more susceptible to insect feeding damage.

Cipollini’s research, which has funding support from the U.S. Department of Agriculture, has implications for crop plants in which salicylate-mediated defenses have been either genetically engineered or chemically manipulated. It also illustrates natural constraints on the evolution of plant resistance.

A major research interest of the Wright State scientist is how plants cope with insects and diseases. This includes examining biochemical mechanisms of resistance, as well as the ecological costs and benefits of plant responses to pests.

Cipollini, who received a WSU Presidential Award for Faculty Excellence Early Career Achievement earlier this year, has been invited to present his induced defense research at international symposia in Australia and Canada next year.

For more information on his research, contact Cipollini at 937-775-3805 or don.cipollini@wright.edu. The Web page for Ecological Society of America is http://www.esa.org and Cipollini’s research Web page is http://www.wright.edu/~don.cipollini.

Richard Doty | Wright State University
Further information:
http://www.wright.edu/cgibin/news_item.cgi?519
http://www.esa.org
http://www.wright.edu/~don.cipollini

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>