Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the air to safeguard your looks, the environment – and planes in flight

18.08.2003


High air pollution does more than just irritate your lungs, research confirms it also affects the way you look. By using ESA-provided pollution maps along with ultraviolet radiation data, cosmetics firm L’Oreal plans to investigate the future possibility of producing skincare products customised for local conditions.



Today the skin-ageing effects of ultraviolet (UV) rays are well known, but the harmful consequences of air pollution on our skin are less easily quantified outside of laboratories. Employing a 2800-strong team of scientists and support staff, L’Oreal has carried out field studies on this subject.

Working with the French Regional Centre for the Fight against Cancer and the Mexican National Institute of Public Health, in 1999 the company began a nine-month study in and around Mexico City - one of the most polluted cities in the world. To study the effects of ozone and nitric oxide on the skin, 96 people in a highly polluted district of the city were compared to 93 subjects living in a less exposed urban area 75 km away.
“We saw many differences between the two groups,” explained François Christiaens of L’Oreal. “We observed increased oxidation of the sebum - the oily secretion that lubricates and protects skin and hair - and the very dry or very greasy skin features of our volunteers living in Mexico City.”



Christiaens explained the consequences are cosmetic, as skin and hair smoothness and brightness change, and also more serious, as oxidation compromises the skin’s natural defences and could also enhance irritation and allergic reactions.

Differences were sufficiently pronounced between people living less than a hundred kilometres apart that researchers grew interested in acquiring more precise information on regional air pollution levels. This in turn increased the existing interest in satellite data, already used for UV forecasting.

“Today UV doses are either collected from ground sites or come from models, but coverage is sparse and there are limited data over time,” said Christiaens. “But satellite data can give us global maps of UV levels, and we can use them to work out realistic doses, as well as fine-tune the doses simulated in laboratory tests.”

From autumn next year L’Oreal will receive regularly updated high-resolution maps of global UV doses and pollution levels, as part of a wide-ranging ESA Data User Programme project called Tropospheric Emission Monitoring Internet Service (TEMIS). Using space-based atmospheric instruments such as SCIAMACHY, the project will chart global concentrations of trace gases, aerosols and UV for a wide range of end users.

“We want to base our methods on state-of-the-art, high technology methods,” Christiaens concluded. “We hope to get more precise – on a smaller grid and taking account of cloudiness – information on ground UV doses and pollutant levels. As a consequence, we may fine-tune our laboratory experiments to provide more customised products to consumers.”

Air quality monitoring

Other TEMIS users will include statutory bodies charged with monitoring air quality, including the Swiss Agency for the Environment, Forest and Landscape (BUWAL). The aim is to supplement data gathered from the National Air Pollution Monitoring Network (NABEL), which monitors air at 16 different locations across Switzerland for pollutants such as nitrogen dioxide, ozone and fine aerosol particles.

“The air pollution situation across the country covers a large range of pollution levels due to its geographic situation,” said Brigitte Buchmann of the Federal Laboratory for Materials Testing and Research (EMPA), which runs the 16-station NABEL network for BUWAL. “There are highly polluted sites in the centre of cities but also stations used for global background information – such as the top of Jungfraujoch, 3580 metres above sea level.”

Located at the heart of Europe, nitrogen dioxide from as far away as Manchester is known to reach Switzerland, along with dust from the Sahara.

Part of EMPA’s interest in TEMIS is in using satellites to track pollution as it travels from ‘hotspot’ regions. “This is of big interest for air quality assessment. At present we use meteorological transport models to link ground-based point measurements with source regions. But visualisation with satellite would be of great additional benefit. Spatial information and tracking of transboundary transport of polluted air are desirable new tools, ” said Buchmann.

Diverting planes from deadly dust

None of the 262 passengers and crew on that British Airways 747 will ever forget that night. Travelling from Kuala Lumpur to Perth in June 1982 the aircraft entered a cloud of volcanic dust from Mount Galunggung on Java, part of the Pacific ‘Ring of Fire’.

Hot dust entered the cabin, the electrical discharge known as ‘St Elmo’s fire’ shot from the wings to the instrument panel, and the engines shut down. Only after falling 6000 metres out of the dust were the engines able to restart, and even then the windscreen was so scratched their emergency landing at Jakarta proved extremely difficult.

It was aviation incidents like this that led to the International Airways Volcano Watch, tasked with reporting to airlines about the location and expected movement of volcanic ash clouds, so planes can re-route around them. Currently the service relies largely on reports from observation stations, pilots and also webcams.

But satellites are well suited to detect ash and also sulphur dioxide gas, typically a ‘signature’ of volcanic eruptions. Until recently the GOME instrument aboard ERS-2 was producing daily aerosol and sulphur dioxide plume maps and next year SCIAMACHY, onboard Envisat, will begin offering the same service, to more effectively guard against aircraft encountering ash clouds in future.

Olivier Arino | alfa
Further information:
http://www.esa.int/export/esaSA/SEM14SYO4HD_earth_0.html

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>