Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lake Ecosystem Critical to East African Food Supply is Threatened by Climate Change

14.08.2003


Lake Tanganyika coastline at Gombe Stream National Park.
Credit: Andrew Cohen, University of Arizona at Tucson; National Science Foundation


Deplying the Hedrick Marrs multicorer used in the O’Reilly et. al. study.
Credit: Andrew Cohen, University of Arizona at Tucson; National Science Foundation


In an important new study directly linking climatic warming with the survival of lake organisms, researchers have found multiple lines of evidence showing that increasing air and water temperatures and related factors are shrinking fish and algae populations in a major lake. The lake holds 18 percent of the world’s liquid freshwater and is a critical food source in East Africa.

Reporting in the August 14, 2003, issue of the journal Nature, Catherine O’Reilly of Vassar College, Andrew Cohen of the University of Arizona, Simone Alin of the University of Washington, Pierre-Denis Plisnier of the Royal Museum for Central Africa in Belgium, and Brent McKee of Tulane University in Louisiana, announce that climate change in the region is harming Lake Tanganyika’s ecosystem, decreasing fish stocks by as much as 30 percent over the past 80 years.

Lake Tanganyika is large and deep, filling the chasm of a rift valley bordering the Democratic Republic of Congo, Tanzania, Zambia and Burundi. An ecosystem unto itself, the lake supports many types of fish. Only a few species are eaten by people, yet they supply 25 to 40 percent of the animal protein for the communities of that region. Recently, the fish supplies have diminished, and catches are shrinking.



"Our research provides the strongest link to date between long- term changes in lake warming in the tropics, recorded by instruments, and declining productivity of the lake’s ecosystem, as seen in sediment cores," said Cohen. "This work provides a clear indication of the regional effects of global climate change, and especially global warming, on tropical lake ecosystems."

The researchers measured lake water temperatures, along with air temperatures and wind velocities, and compared data to equivalent records from the past eight decades. Those factors help determine how well water circulates within the lake, a critical factor for the distribution of nutrients that support life in the lake’s food chain.

"This is an important study that demonstrates the dramatic response of a lake ecosystem to changes in climatic and environmental conditions over a relatively short period of time," said Jarvis Moyers, director of the Division of Atmospheric Sciences at the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering and a sponsor of this research.

Ultimately, O’Reilly and her colleagues found that temperatures have increased 0.6 degrees Celsius in the air above the lake, with a proportional increase in the water temperature, while wind velocities have decreased.

Those temperature changes stabilize the water column in lakes, especially in the tropics where, unlike in temperate regions, winter cooling and mixing is absent. The increased stability decreased circulation, hampering the re-supply of nutrients from the deep water to the surface waters of the lake where they help algae grow. The algae, which form the base of Lake Tanganyika’s food chain, ultimately feed the commercially important fish.

Future predictions for this region indicate a roughly 1.5 degree Celsius rise in air temperature, said O’Reilly-further stabilizing the lake and reducing mixing, with potentially devastating effects on fish stocks.

"Continued climate warming has some severe implications for the nutrition and economy of the region’s people, who depend heavily on the lake as a natural resource," said O’Reilly. "To date, most studies have found significant effects of climate change in the northern hemisphere," she added, "while our study indicates that substantial warming is also occurring in the tropics, and that it is having a negative impact on some ecosystems."

In addition to finding evidence of warming in lake water temperatures and decreased windiness from instrument records, the researchers analyzed organic matter from welldated lake sediment cores and found clues that life in the ecosystem has been on the decline.

Information from the sediments indicated that algae abundance declined 20 percent over the 80-year period for which data exists. The researchers believe the decline is a direct result of the reduction in lake circulation. Based on earlier studies of other lakes, that decline would lead to a 30 percent reduction in fish stocks, in addition to any possible effects of over- fishing.

"The fisheries of Lake Tanganyika currently yield approximately 200,000 tons of fish per year, and are far and away the most important source of animal protein for human consumption in this region of Central Africa," said Cohen. SGiven the already significant problems of malnutrition and civil conflict in central Africa, a significant decline in fishing yields resulting from climate change could lead to extremely serious consequences for the region’s food supply," he added.

NSF supported this research through the Nyanza Project, an interdisciplinary research training program for undergraduate and graduate students and secondary school teachers based at the University of Arizona at Tucson. This project, part of the NSF Research Experiences for Undergraduates program, supported O’Reilly and Alin, who were graduate students when they conducted the field and lab work. O’Reilly is now visiting assistant professor of environmental science at Vassar College and a faculty member of the Nyanza Project. The project also supported undergraduates who collected lake-water temperature data. Major funding for the broader lake research came from the United Nations Global Environmental Fund’s Lake Tanganyika Biodiversity Project.

Josh Chamot | NSF
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>