Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising height of atmospheric boundary points to human impact on climate

25.07.2003


A team of scientists, including several from the National Center for Atmospheric Research (NCAR), has determined that human-related emissions are largely responsible for an increase in the height of the tropopause - the boundary between the two lowest layers of the atmosphere. The research results, which will be published July 25 in the journal Science, provide additional evidence that emissions from power plants, automobiles, and other human-related (or anthropogenic) sources are having profound impacts on the atmosphere and global climate.



"Determining why the height of the tropopause is increasing gives us insights into the causes of the overall warming of the lower atmosphere," explains Tom Wigley, an NCAR senior scientist and co-author of the article. "Although not conclusive in itself, this research is an important piece in the jigsaw puzzle."

Benjamin Santer of the Lawrence Livermore National Laboratory is the lead author of the article, "Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes." Wigley and four other NCAR scientists contributed to the article. NCAR’s primary sponsor is the National Science Foundation.


Although numerous past studies have pointed to human activities as a leading cause of global warming, this is the first to evaluate impacts on the tropopause. It also provides evidence that temperatures are rising in the troposphere, the lowest layer in the atmosphere.

The tropopause provides a unique window into atmospheric temperatures because it is situated at the upper boundary of the troposphere, where temperatures cool with increased altitude, and at the lower boundary of the stratosphere, where temperatures warm with increased altitude. Observations and climate models both show that the tropopause, which is about 5 to 10 miles (8 to 16 kilometers) above Earth’s surface depending on latitude and season, has risen by several hundred feet since 1979. Although this height increase does not directly affect Earth, it is important as an indication that the troposphere is becoming warmer and the stratosphere is becoming cooler. But until now, no study has looked into how much of the tropopause height increase could be attributed to natural causes and how much to human impacts on the atmosphere.

The research team looked at five variables--two natural and three human-related--that could contribute to the height increase: solar radiation, volcanic activity, emissions of greenhouse gases (such as carbon dioxide), emissions of sulfur dioxide, and levels of tropospheric and stratospheric ozone. The team used the NCAR/Department of Energy Parallel Climate Model to conduct a series of seven experiments. The first five analyzed each factor’s impact on the atmosphere in isolation. The sixth looked at the combined impact of the two natural factors, solar radiation and volcanic activity. The seventh assessed the impact of all the factors combined. The impacts were compared with observed changes in tropopause height, which were inferred from two sets of data--one from NCAR and the National Center for Environmental Prediction, and the other from the European Centre for Medium-Range Weather Forecasts.

The results showed that the depletion of stratospheric ozone combined with human emissions of greenhouse gases accounted for more than 80 percent of the rise in the tropopause. Ozone depletion (caused largely by human emissions of chlorofluorocarbons, or CFCs) was significant because it cooled the stratosphere, while greenhouse gases warmed the troposphere. The other factors had much smaller impacts. Solar activity made a small contribution to warming in the troposphere and stratosphere, while sulfur dioxide emissions from both human-related activities and volcanic eruptions slightly cooled the troposphere.

The study also gives support to scientists, including Wigley and Santer, who believe temperatures in the upper troposphere are increasing. Researchers have been at odds over whether satellite data indicate that atmospheric temperatures are rising or stable. But a new data set produced by researchers at remote sensing systems in Santa Rosa, California, and analyzed by Santer, Wigley, and other scientists in Science earlier this year indicates that global temperatures in the lowest several miles of the atmosphere rose by one-third of a degree Fahrenheit (about 0.2 degrees Celsius) between 1979 and 1999.

"The increase in the height of the tropopause appears to support the data set that shows the troposphere is warming," Wigley says.

Anatta | EurekAlert!
Further information:
http://www.ucar.edu/ucar

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>