Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rising height of atmospheric boundary points to human impact on climate


A team of scientists, including several from the National Center for Atmospheric Research (NCAR), has determined that human-related emissions are largely responsible for an increase in the height of the tropopause - the boundary between the two lowest layers of the atmosphere. The research results, which will be published July 25 in the journal Science, provide additional evidence that emissions from power plants, automobiles, and other human-related (or anthropogenic) sources are having profound impacts on the atmosphere and global climate.

"Determining why the height of the tropopause is increasing gives us insights into the causes of the overall warming of the lower atmosphere," explains Tom Wigley, an NCAR senior scientist and co-author of the article. "Although not conclusive in itself, this research is an important piece in the jigsaw puzzle."

Benjamin Santer of the Lawrence Livermore National Laboratory is the lead author of the article, "Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes." Wigley and four other NCAR scientists contributed to the article. NCAR’s primary sponsor is the National Science Foundation.

Although numerous past studies have pointed to human activities as a leading cause of global warming, this is the first to evaluate impacts on the tropopause. It also provides evidence that temperatures are rising in the troposphere, the lowest layer in the atmosphere.

The tropopause provides a unique window into atmospheric temperatures because it is situated at the upper boundary of the troposphere, where temperatures cool with increased altitude, and at the lower boundary of the stratosphere, where temperatures warm with increased altitude. Observations and climate models both show that the tropopause, which is about 5 to 10 miles (8 to 16 kilometers) above Earth’s surface depending on latitude and season, has risen by several hundred feet since 1979. Although this height increase does not directly affect Earth, it is important as an indication that the troposphere is becoming warmer and the stratosphere is becoming cooler. But until now, no study has looked into how much of the tropopause height increase could be attributed to natural causes and how much to human impacts on the atmosphere.

The research team looked at five variables--two natural and three human-related--that could contribute to the height increase: solar radiation, volcanic activity, emissions of greenhouse gases (such as carbon dioxide), emissions of sulfur dioxide, and levels of tropospheric and stratospheric ozone. The team used the NCAR/Department of Energy Parallel Climate Model to conduct a series of seven experiments. The first five analyzed each factor’s impact on the atmosphere in isolation. The sixth looked at the combined impact of the two natural factors, solar radiation and volcanic activity. The seventh assessed the impact of all the factors combined. The impacts were compared with observed changes in tropopause height, which were inferred from two sets of data--one from NCAR and the National Center for Environmental Prediction, and the other from the European Centre for Medium-Range Weather Forecasts.

The results showed that the depletion of stratospheric ozone combined with human emissions of greenhouse gases accounted for more than 80 percent of the rise in the tropopause. Ozone depletion (caused largely by human emissions of chlorofluorocarbons, or CFCs) was significant because it cooled the stratosphere, while greenhouse gases warmed the troposphere. The other factors had much smaller impacts. Solar activity made a small contribution to warming in the troposphere and stratosphere, while sulfur dioxide emissions from both human-related activities and volcanic eruptions slightly cooled the troposphere.

The study also gives support to scientists, including Wigley and Santer, who believe temperatures in the upper troposphere are increasing. Researchers have been at odds over whether satellite data indicate that atmospheric temperatures are rising or stable. But a new data set produced by researchers at remote sensing systems in Santa Rosa, California, and analyzed by Santer, Wigley, and other scientists in Science earlier this year indicates that global temperatures in the lowest several miles of the atmosphere rose by one-third of a degree Fahrenheit (about 0.2 degrees Celsius) between 1979 and 1999.

"The increase in the height of the tropopause appears to support the data set that shows the troposphere is warming," Wigley says.

Anatta | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>