Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping coral reefs survive climate change

24.07.2003


1) Coral species can differ in their bleaching responses: the Acropora sp. on the left is bleached, while the Porites sp. on the right is not
Photo: Arjan Rajasuriya, Westmacott et al. 2000

2) Bleached branching corals (Acropora sp.) in the western Indian Ocean in 1998
Photo: ARVAM, Westmacott et al. 2000

3) The tip of this coral colony (Acropora sp.) is bleached but alive, while the lower portion has died and is now overgrown with algae
Photo: ARVAM, Westmacott et al. 2000


While the high ocean surface temperatures during the 1997-98 El Nino bleached coral reefs in more than 50 tropical countries worldwide, patches of coral did survive in or near the damaged reefs. A new study of these patches identifies factors likely to protect these threatened marine ecosystems during climate change.

"As baseline sea surface temperatures continue to rise, climate change may represent the single greatest threat to coral reefs worldwide," say Jordan West of the U.S. Environmental Protection Agency in Washington, DC, and Rodney Salm of The Nature Conservancy in Honolulu, Hawaii, in the August issue of Conservation Biology.

Coral reefs have among the greatest biodiversity of any ecosystem worldwide and provide key services to people, from food to coastal protection to tourism. Reef-building corals depend on symbiotic algae to photosynthesize much of their food, and surface waters that are warmer than normal can "bleach" corals by depleting their photosynthetic pigments or even make them expel their algae.



To help conserve coral reefs during climate change, West and Salm assessed factors that may have protected the coral patches that survived the 1997-98 bleaching. The factors fell into two categories: those that make corals resistant to climate change by, for instance, reducing local sea surface temperatures, and those that make reefs resilient to climate change by helping them recover from bleaching.

The researchers found that the factors that confer resistance to bleaching include local upwellings of cold water, and natural exposure to heat stress. For instance, in an area of Binh Thuan, Vietnam, upwelling of cold water brought surface temperatures down from 39 degrees C to 29 degrees C within days, and corals there recovered better than elsewhere in the country.

In addition, corals that emerge at low tides may be more tolerant of heat stress. For instance, in Palau’s Rock Islands, the reef flats that emerge during the low tide were bleached less than the parts of the reef that are in deeper waters.

The factors that confer resilience to bleaching include having diverse populations of corals that produce lots of larvae, surface currents that spread the larvae, herbivorous fish that graze the algae that otherwise grow on top of damaged reefs and prevent the establishment of new corals, and management that decreases stresses such as pollution and fishing methods that destroy reefs.

West and Salm recommend that coral reef managers use this work to identify and protect patches of coral reef that are most likely to persist during continuing climate change. Establishing reserves that protect networks of these patches will help ensure that the corals that survive a major bleaching event will be able to replenish those that do not. The Nature Conservancy is currently applying this work to help coral reefs recover from bleaching in the Republic of Palau, which is developing a national network of Marine Protected Areas.

Contact: Rodney Salm, (+1) 808-587-6284, rsalm@tnc.org

Jordan West | EurekAlert!
Further information:
http://conservationbiology.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>