Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaf fall in ancient polar forests still a mystery

03.07.2003


Explorers in the 1800s discovered through fossils that deciduous forests once covered the poles, but researchers still do not know why leaf-dropping trees were preferred over evergreens.



"The dominant idea since the 1940s was that because of the polar light regime of continuous darkness and warmth, leafless branches had an advantage over evergreen canopies in the polar forests," says Dana Royer, research associate in geosciences, Penn State.

This carbon loss hypothesis states that the amount of carbon lost when a canopy of leaves is shed annually is less than the total carbon lost by canopy respiration during the warm, dark winter months and the small amount of leaf loss in evergreens. This would give deciduous trees an advantage during long, very dark winters.


During much of the past 250 million years, the Earth’s poles were devoid of ice, and nearly 40 percent of the area was covered by forests consisting mostly of deciduous trees.

"Today, we do not have these types of forests in the polar latitudes so we have no analog," says Royer. "In most places, the trees we see at the tree line today are evergreens, not deciduous trees."

Working with Dr. David J Beerling, professor and Dr. Colin P. Osborne in the department of animal sciences, University of Sheffield, Sheffield, UK, the Penn State researcher tested trees considered living fossils to see if the carbon loss hypothesis was correct. They looked at gingko, dawn redwood and bald cypress, all deciduous trees that are considered living fossils because they have existed much as they are since there were polar forests. Also tested were two living fossil evergreens, sequoia and southern beech.

In Sheffield, the trees grew under controlled temperatures, carbon dioxide and light. The researchers monitored the amount of leaf litter and the amounts of carbon lost to respiration for both groups of trees.

The researchers report in this week’s issue of Nature that "the quantity of carbon lost annually by shedding a deciduous canopy is significantly greater than that lost by evergreen trees through winter-time respiration and leaf litter production. We therefore reject the carbon-loss hypothesis as an explanation for the deciduous nature of polar forests."

The trees studied where young, starting as year-old saplings and monitored for three years. The researchers used mathematical models to extrapolate to full grown mature forests, but found that even then, counter to expectations, the evergreens had an advantage. The modeling suggests that "the cost of producing a deciduous canopy of leaves remains more than twice that incurred by evergreen trees through canopy respiration and turnover."

The researchers looked at forests that would be at 69 degrees latitude, the mildest regime that is still polar because they initially feared the trees would not survive long periods of complete darkness. They are now looking to simulate even higher latitudes. Two carbon dioxide regimes were used, because it is generally accepted that atmospheric carbon dioxide was higher when these polar forests existed. The temperatures were kept warm, never dipping below freezing.

While the researchers found that the carbon loss hypothesis was not valid, they did not uncover the reasons why deciduous, and not evergreen trees, populated the polar forests.

"What we did find is that while everyone thought that the biggest problems would be during the polar winter -- when there is no sunlight -- there appears to be a problem with the polar summer, when there is uninterrupted sunlight," says Royer. "Both types of plants seem to undergo a drop in photosynthesis after long days of unremittant sun."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>