Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel bacterium detoxifies chlorinated pollutants

03.07.2003


Researchers have isolated a novel bacterium that flourishes as it destroys harmful chlorinated compounds in polluted environments, leaving behind environmentally benign end products. The finding opens the door for designing more efficient and successful bioremediation strategies for thousands of contaminated sites that remain threats, despite years of expensive cleanup work.



"This organism might be useful for cleaning contaminated subsurface environments and restoring drinking-water reservoirs," Georgia Institute of Technology researchers report in the July 3, 2003 issue of the journal Nature.

The paper, titled "Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium" is the culmination of five years of field and laboratory studies funded by the National Science Foundation and the Strategic Environmental Research and Development Program.


Scientists and engineers have struggled for years with clean up of groundwater and subsurface environments contaminated decades ago by unregulated use of the common solvents tetrachloroethene (PCE) and trichloroethene (TCE). These toxic compounds are primarily used in dry cleaning operations and degreasing of metal components. Complicating the situation are natural biotic and abiotic processes that transform these solvents to intermediate substances, such as toxic dichloroethenes, and cancer-causing agents, such as vinyl chloride.

But in a step toward engineering better bioremediation strategies, Georgia Tech researchers have isolated a naturally occurring bacterium, designated Dehalococcoides strain BAV1, in a pure culture – without other microbial species present in the sample. Though some progress was made in the past decade in understanding the bacteria involved in partial degradation of PCE and TCE, this study represents a significant advance, researchers said.

"Isolating this bacterium will allow us to study the organism and the dechlorination process in more detail," said lead researcher Frank Loeffler, an assistant professor in the School of Civil and Environmental Engineering. "We can get a lot more information that we can then use to engineer systems in the environment so PCE and TCE degradation would not stop at the toxic intermediate stage, but rather would continue to be dechlorinated to a non-toxic end product, such as ethene."

One site that appears likely to benefit from in-place bioremediation with this bacterium is the Bachman Road residential area contaminated with PCE by a former dry cleaning operation in Oscoda, Mich. There, researchers recently used BAV1 in a successful pilot demonstration, which they briefly reference in the Nature paper. Loeffler and his colleagues described the results of the pilot study in greater detail in a paper published in February 2003 in Environmental Science & Technology.

At this contaminated site, PCE penetrated the water table and contaminated drinking-water wells in the area. The contaminants also migrated through the groundwater into nearby Lake Huron, which attracts sunbathers and swimmers to its beaches and water.

In 14-feet by 16-feet, 20-feet-deep test plots at the Bachman Road site, researchers compared a non-treated control section to two bioremediation approaches using BAV1, which already occurs at this site in low numbers. One strategy, called biostimulation, added lactate and nutrients to the contaminated plot. In another section, researchers injected a mixed culture containing high numbers of BAV1 along with nutrients in a strategy called bioaugmentation. This technique resulted in complete dechlorination of PCE to ethene within six weeks. Biostimulation, on the other hand, worked but took more time to accomplish detoxification.

"Bioaugmentation had a relatively poor reputation," Loeffler said. "In cases targeting petroleum candidates, it didn’t help any more than less expensive strategies. Now, we have a good example of bioaugmentation at work…. It is a viable option, especially at sites with this type (chlorinated solvents) of contamination. So there’s a lot of excitement about this. People have spent a lot of money to clean up those sites without success. Now there’s a new hope."

There are thousands of similar contaminated sites, including military installations where PCE and TCE were once used unregulated as degreasing agents. Both laboratory and field work reported in Nature revealed that the growth of BAV1 depends strictly on the reduction of these chlorinated compounds (e.g., dichloroethenes and vinyl chloride) to ethene and the presence of hydrogen as an electron donor. Also, genetic analyses, analytical chemistry techniques and high-resolution scanning electron microscopy yielded information about the organism’s appearance, makeup and behavior. One peculiarity is filament-like appendages extending from BAV1 cells. Loeffler speculates that these appendages may allow the organisms to colonize contaminated subsurface environments.

Also, phylogenetic analysis described in Nature revealed that BAV1 belongs to the only-recently discovered Dehalococcoides group, which comprises other organisms useful in bioremediation. The findings highlight the largely untapped reservoir of bacterial diversity, Loeffler added.

BAV1’s origin is unknown, though Loeffler believes it evolved long ago, deriving energy from naturally occurring chlorinated compounds, including chlorinated solvents, in the environment. He suggested that BAV1 in some natural areas survives by eating low concentrations of chlorinated compounds formed from volcanic, biologic and possibly ultraviolet light processes. Other scientists assert that BAV1 occurred in the environment long ago, but only developed its chlorinated compound-based metabolism in response to PCE and TCE pollution.

Georgia Tech researchers will continue to learn more about BAV1 as they conduct larger-scale studies, in which Loeffler admits researchers will have a more difficult job in monitoring the dechlorination process. Also, that process may not happen as quickly as it did in the smaller, pilot demonstration. In addition to future studies at the Michigan site, Loeffler is proposing similar research to the U.S. Department of Defense at a TCE-contaminated military installation near Atlanta. There, he expects bioremediation to be complicated by a fractured rock layer beneath the water table.

In addition to opening the doors for further research on BAV1, the Georgia Tech study yielded a molecular technique that likely will be useful to scientists and engineers conducting similar research. The technique allows researchers to quantify the number of BAV1 organisms present at a contaminated site. An increasing number of organisms indicates a positive response to bioremediation efforts. This technique uses a real-time polymerase chain reaction (PCR) device to test field sites.

Loeffler is hopeful about the use of BAV1 and related organisms in bioremediation. He speculates that this group of bacteria might also be useful to treat sites contaminated with polychlorinated dibenzo-dioxins (PCDDs) and polychlorinated biphenyls (PCBs).

"Organisms like BAV1 have an enormous potential to help detoxify chlorinated pollutants," Loeffler said. "But we’re just at the beginning of understanding their function, distribution and ecology in the environment."

The lead author on the Nature paper is Loeffler’s Ph.D. student Jianzhong He, who isolated BAV1 in her professor’s lab. Other authors are postdoctoral fellow Kirsti Ritalahti, who led molecular analyses, graduate student Kun-Lin Yang, who contributed scanning electron microscopy studies, and Stephen Koenigsberg of California-based Regenesis Bioremediation Products, which contributed equipment and materials.

Georgia Tech has filed two patent applications related to Loeffler’s research, and Regenesis is marketing the research team’s culture, called Bio-Dechlor InoculumTM, to the bioremediation community. For more information, see www.regenesis.com/products/bd_inoculum/.


Georgia Tech Research News and Research Horizons magazine, along with high-resolution JPEG images, can be found on the Web at http://www.gtresearchnews.gatech.edu.

Media Contacts:
1. Jane M. Sanders, Georgia Tech, 404-894-2214, or
E-mail: jane.sanders@edi.gatech.edu
2. John Toon, Georgia Tech, 404-894-6986, or
E-mail: john.toon@edi.gatech.edu

For technical information, contact:
1. Frank Loeffler, 404-894-0279, or
E-mail: frank.loeffler@ce.gatech.edu
2. Kirsti Ritalahti, 404-894-5009, or
E-mail krita@ce.gatech.edu

Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/
http://www.regenesis.com/products/bd_inoculum

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>