Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The flight of ICAROS

27.06.2003


EU satellite research project tackles urban air quality from space



A three-year project led by the Commission with ten partners from Greece, Germany, Hungary and Italy has developed an innovative system for monitoring and managing urban air quality and the related health risks. Results of the “ICAROS NET” technique were presented today in Budapest. ICAROS uses satellite-borne sensors to monitor the concentration of harmful particles in the air, caused by heavy industry, traffic and household heating systems. Four pilot trials of the ICAROS NET system are under way in Athens, Milan, Munich and Budapest. It is the first time that ultra-fine pollution particles have been detected from space with such accuracy and precision. Early results from the Athens pilot project are encouraging, indicating that the system is as reliable as land-based alternatives but provides better environmental information, and that environmental policy initiatives, such as reducing sulphur in diesel and introducing fuel alternatives such as natural gas, are successful in reducing pollution levels.

European Research Commissioner Philippe Busquin said: “Fine airborne particles represent one of the biggest threats to human health from air pollution. If we are to improve environmental and health policy-making in the EU, we need precise and accurate air pollution data. Monitoring air pollution is a good illustration of what space technology can do for citizens and provides an additional argument to boost EU investments in space. This is particularly relevant in our initiative to build a European capacity for Global Monitoring for Environment and Security.”


Mapping health risks from space

The Budapest workshop will provide a forum for the ICAROS NET team to discuss with competent authorities ways of applying this new air pollution monitoring and assessment system more widely in the EU and beyond. Results will help improve environment and health policy making in Europe and the effectiveness of international environmental treaties.

The system merges atmospheric information derived from satellite-borne sensors with measurements from the ground and results of computer models to derive conclusive and comprehensive maps of the spatial distribution of particulate matter concentration in the lower atmosphere. The sensors monitor atmospheric pollution in areas as small as 30 metres in diameter, by measuring the proportion of light scattered by particulate matter. By incorporating data on expected health effects drawn from epidemiological studies, ICAROS NET allows the quantitative evaluation and mapping of the anticipated health risk from ultra-fine particles.

This computational tool is flexible enough to be used at urban, regional and cross-border levels. Given the need for co-ordinated international action to resolve environmental problems linked to air pollution, the ICAROS-NET system could be used by all EU Member States and applicant countries in central Europe.



ICAROS-NET uses four areas as test-grounds to validate the system. Athens (Greece), Budapest (Hungary) and Munich (Germany) on the urban scale, and Lombardy (Italy) at the regional level.

The analysis of the first experimental campaign in Athens revealed a very high accuracy of results (more than 90%) from the satellite sensors, compared with air pollution measurements from the ground. This demonstrated that it is possible to calculate concentration of ultra-fine particles from satellite measurements even at very high levels of spatial detail. Furthermore, it was possible to identify clearly the main particulate sources in the area, including heavy industry, highway traffic and diesel-fuelled residential heating.

Analysis of historical data since 1987 identified for the first time the average concentrations of ultra-fine particles and the evolution of their spatial distribution across the whole Athens basin. Cross-analysis of this information against the array of environmental policy measures taken in the area since the ‘90s showed the significance of initiatives, such as the reduction of the sulphur content in diesel fuel, or the introduction of alternative fuel, such as natural gas, in public transport, towards decoupling economic growth from environmental health degradation.

Integrating research findings into the bigger picture: global monitoring for the environment and security

Over the next 18 months, the analysis of the data from the recently concluded second campaign in Athens will continue and it will be extended to Munich, where an experimental application of ICAROS NET was just completed. The ICAROS NET system will be fully compatible with the INSPIRE§ initiative of the European Commission towards an integrated spatial data infrastructure in support of a European capacity for global monitoring for environment and security (GMES).

Fabio Fabbi | European Commission
Further information:
http://icaros-net.jrc.cec.eu.int
http://www.jrc.cec.eu.int

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>