Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The flight of ICAROS

27.06.2003


EU satellite research project tackles urban air quality from space



A three-year project led by the Commission with ten partners from Greece, Germany, Hungary and Italy has developed an innovative system for monitoring and managing urban air quality and the related health risks. Results of the “ICAROS NET” technique were presented today in Budapest. ICAROS uses satellite-borne sensors to monitor the concentration of harmful particles in the air, caused by heavy industry, traffic and household heating systems. Four pilot trials of the ICAROS NET system are under way in Athens, Milan, Munich and Budapest. It is the first time that ultra-fine pollution particles have been detected from space with such accuracy and precision. Early results from the Athens pilot project are encouraging, indicating that the system is as reliable as land-based alternatives but provides better environmental information, and that environmental policy initiatives, such as reducing sulphur in diesel and introducing fuel alternatives such as natural gas, are successful in reducing pollution levels.

European Research Commissioner Philippe Busquin said: “Fine airborne particles represent one of the biggest threats to human health from air pollution. If we are to improve environmental and health policy-making in the EU, we need precise and accurate air pollution data. Monitoring air pollution is a good illustration of what space technology can do for citizens and provides an additional argument to boost EU investments in space. This is particularly relevant in our initiative to build a European capacity for Global Monitoring for Environment and Security.”


Mapping health risks from space

The Budapest workshop will provide a forum for the ICAROS NET team to discuss with competent authorities ways of applying this new air pollution monitoring and assessment system more widely in the EU and beyond. Results will help improve environment and health policy making in Europe and the effectiveness of international environmental treaties.

The system merges atmospheric information derived from satellite-borne sensors with measurements from the ground and results of computer models to derive conclusive and comprehensive maps of the spatial distribution of particulate matter concentration in the lower atmosphere. The sensors monitor atmospheric pollution in areas as small as 30 metres in diameter, by measuring the proportion of light scattered by particulate matter. By incorporating data on expected health effects drawn from epidemiological studies, ICAROS NET allows the quantitative evaluation and mapping of the anticipated health risk from ultra-fine particles.

This computational tool is flexible enough to be used at urban, regional and cross-border levels. Given the need for co-ordinated international action to resolve environmental problems linked to air pollution, the ICAROS-NET system could be used by all EU Member States and applicant countries in central Europe.



ICAROS-NET uses four areas as test-grounds to validate the system. Athens (Greece), Budapest (Hungary) and Munich (Germany) on the urban scale, and Lombardy (Italy) at the regional level.

The analysis of the first experimental campaign in Athens revealed a very high accuracy of results (more than 90%) from the satellite sensors, compared with air pollution measurements from the ground. This demonstrated that it is possible to calculate concentration of ultra-fine particles from satellite measurements even at very high levels of spatial detail. Furthermore, it was possible to identify clearly the main particulate sources in the area, including heavy industry, highway traffic and diesel-fuelled residential heating.

Analysis of historical data since 1987 identified for the first time the average concentrations of ultra-fine particles and the evolution of their spatial distribution across the whole Athens basin. Cross-analysis of this information against the array of environmental policy measures taken in the area since the ‘90s showed the significance of initiatives, such as the reduction of the sulphur content in diesel fuel, or the introduction of alternative fuel, such as natural gas, in public transport, towards decoupling economic growth from environmental health degradation.

Integrating research findings into the bigger picture: global monitoring for the environment and security

Over the next 18 months, the analysis of the data from the recently concluded second campaign in Athens will continue and it will be extended to Munich, where an experimental application of ICAROS NET was just completed. The ICAROS NET system will be fully compatible with the INSPIRE§ initiative of the European Commission towards an integrated spatial data infrastructure in support of a European capacity for global monitoring for environment and security (GMES).

Fabio Fabbi | European Commission
Further information:
http://icaros-net.jrc.cec.eu.int
http://www.jrc.cec.eu.int

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>