Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The EU joins forces with international partners on research to "clean up" fossil fuels

26.06.2003


Today in Washington the European Commission, represented by Loyola de Palacio, Vice President in charge of Energy and Transport, signed an international charter on CO2 capture and storage (CO2/carbon sequestration).

This will create the “Carbon Sequestration Leadership Forum” with Australia, Brazil, Canada, Colombia, Italy, India, Japan, Mexico, Norway, the People’s Republic of China, Russia, the United Kingdom and the US. The Forum aims to stimulate research into carbon sequestration technologies, to “clean up” fossil fuels by capturing CO2 at source and storing it for thousands of years deep underground. This will help reduce greenhouse gas emissions.

Vice president De Palacio said: “We are committed to meeting the Kyoto Protocol targets, through the enhanced use of renewable energy sources, and more efficient use of energy. All these efforts are on track through brand new legislation adopted in the last few years. Carbon sequestration complements these efforts. The agreement signed today offers opportunities for deeper cuts in emissions well beyond the Kyoto 2012 horizon, as a further contribution in the crucial fight against climate change.”



Speaking from Brussels, European Research Commissioner Philippe Busquin stressed that EU research leads in this field: “During the past ten years we have funded research projects worth over €30 million. We will now intensify our efforts by supporting ambitious research projects, totalling some €200 million, to address scientific, technological and other barriers to carbon sequestration. The main goal is to check if carbon sequestration in geological formations is environmentally sound and cost effective. This research could also have an important impact in the field of hydrogen and fuel cell technologies, facilitating the clean production of hydrogen from fossil fuels. We look forward to working with other international partners to develop this promising technology.”

Why carbon sequestration?

The concentration of CO2 in the atmosphere is increasing because of emissions from fossil fuel combustion boosting the natural greenhouse effect, leading to climate change. Power generation, transport, industry and domestic uses are contributing to this increase. The EU committed itself in the Kyoto Protocol to reducing its Green House Gases (GHG) emissions by 8% in the 2008-2012 period compared to 1990 levels.

However, in order to stabilize GHG concentrations in the atmosphere at acceptable levels, much deeper cuts in emissions (by more than 50% globally over the next 50 years) will be necessary. CO2 sequestration could help to meet this goal by capturing CO2 at source and storing it in geological formations.

Other options to limit CO2 emissions, in the energy and transport sectors, include reducing energy consumption, increasing energy efficiency, using low-carbon fuels, and increasing the use of energy sources with low to zero CO2 emissions, such as renewables. In addition, it is necessary to enhance the carbon sink capacity of the biosphere (e.g. forests).

Industrial applications

Coal use for power generation is forecast to increase significantly in the coming decades. Carbon sequestration could be incorporated in power plants that are using coal or natural gas. Capture and storage technologies are best applied in connection with large-scale energy conversion plants such as coal power plants and oil refineries. Carbon sequestration offers the possibility for new industrial applications such as the production of hydrogen, together with electricity, from fossil fuels. The CO2 produced as a by-product could be captured and stored underground.

The European market for carbon sequestration could be large enough for a strong domestic industry sector. But carbon sequestration is not yet economically competitive. It is at the moment more expensive compared to other available options to reduce CO2 emissions in the production of electricity. Nevertheless, with the need for more extensive CO2 emission cuts in the future, carbon sequestration technology could become economically attractive.

How does carbon sequestration work?

For CO2 storage to be an effective way of reducing the risk of climate change, carbon must be stored for thousands of years. Storage must have low environmental impact, acceptable cost and conform to national and international laws. The main options for storing CO2 underground are in depleted oil and gas reservoirs, deep saline reservoirs and unminable coal seams. Already today CO2 is injected underground in many Enhanced Oil Recovery projects.

Underground storage of natural gas, an analogous technique, is widely practised and does not pose safety concerns. However, as CO2 is an asphyxiant and heavier than air, the highest possible safety standards have to be implemented, so as to avoid slow leakage or sudden large-scale release resulting from seismic activity. Underground water sources must also be protected.

| European Commission
Further information:
http://europa.eu.int/comm/research/energy/nn/nn_rt_co1_en.html

More articles from Ecology, The Environment and Conservation:

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>