Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The EU joins forces with international partners on research to "clean up" fossil fuels


Today in Washington the European Commission, represented by Loyola de Palacio, Vice President in charge of Energy and Transport, signed an international charter on CO2 capture and storage (CO2/carbon sequestration).

This will create the “Carbon Sequestration Leadership Forum” with Australia, Brazil, Canada, Colombia, Italy, India, Japan, Mexico, Norway, the People’s Republic of China, Russia, the United Kingdom and the US. The Forum aims to stimulate research into carbon sequestration technologies, to “clean up” fossil fuels by capturing CO2 at source and storing it for thousands of years deep underground. This will help reduce greenhouse gas emissions.

Vice president De Palacio said: “We are committed to meeting the Kyoto Protocol targets, through the enhanced use of renewable energy sources, and more efficient use of energy. All these efforts are on track through brand new legislation adopted in the last few years. Carbon sequestration complements these efforts. The agreement signed today offers opportunities for deeper cuts in emissions well beyond the Kyoto 2012 horizon, as a further contribution in the crucial fight against climate change.”

Speaking from Brussels, European Research Commissioner Philippe Busquin stressed that EU research leads in this field: “During the past ten years we have funded research projects worth over €30 million. We will now intensify our efforts by supporting ambitious research projects, totalling some €200 million, to address scientific, technological and other barriers to carbon sequestration. The main goal is to check if carbon sequestration in geological formations is environmentally sound and cost effective. This research could also have an important impact in the field of hydrogen and fuel cell technologies, facilitating the clean production of hydrogen from fossil fuels. We look forward to working with other international partners to develop this promising technology.”

Why carbon sequestration?

The concentration of CO2 in the atmosphere is increasing because of emissions from fossil fuel combustion boosting the natural greenhouse effect, leading to climate change. Power generation, transport, industry and domestic uses are contributing to this increase. The EU committed itself in the Kyoto Protocol to reducing its Green House Gases (GHG) emissions by 8% in the 2008-2012 period compared to 1990 levels.

However, in order to stabilize GHG concentrations in the atmosphere at acceptable levels, much deeper cuts in emissions (by more than 50% globally over the next 50 years) will be necessary. CO2 sequestration could help to meet this goal by capturing CO2 at source and storing it in geological formations.

Other options to limit CO2 emissions, in the energy and transport sectors, include reducing energy consumption, increasing energy efficiency, using low-carbon fuels, and increasing the use of energy sources with low to zero CO2 emissions, such as renewables. In addition, it is necessary to enhance the carbon sink capacity of the biosphere (e.g. forests).

Industrial applications

Coal use for power generation is forecast to increase significantly in the coming decades. Carbon sequestration could be incorporated in power plants that are using coal or natural gas. Capture and storage technologies are best applied in connection with large-scale energy conversion plants such as coal power plants and oil refineries. Carbon sequestration offers the possibility for new industrial applications such as the production of hydrogen, together with electricity, from fossil fuels. The CO2 produced as a by-product could be captured and stored underground.

The European market for carbon sequestration could be large enough for a strong domestic industry sector. But carbon sequestration is not yet economically competitive. It is at the moment more expensive compared to other available options to reduce CO2 emissions in the production of electricity. Nevertheless, with the need for more extensive CO2 emission cuts in the future, carbon sequestration technology could become economically attractive.

How does carbon sequestration work?

For CO2 storage to be an effective way of reducing the risk of climate change, carbon must be stored for thousands of years. Storage must have low environmental impact, acceptable cost and conform to national and international laws. The main options for storing CO2 underground are in depleted oil and gas reservoirs, deep saline reservoirs and unminable coal seams. Already today CO2 is injected underground in many Enhanced Oil Recovery projects.

Underground storage of natural gas, an analogous technique, is widely practised and does not pose safety concerns. However, as CO2 is an asphyxiant and heavier than air, the highest possible safety standards have to be implemented, so as to avoid slow leakage or sudden large-scale release resulting from seismic activity. Underground water sources must also be protected.

| European Commission
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>