Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The EU joins forces with international partners on research to "clean up" fossil fuels

26.06.2003


Today in Washington the European Commission, represented by Loyola de Palacio, Vice President in charge of Energy and Transport, signed an international charter on CO2 capture and storage (CO2/carbon sequestration).

This will create the “Carbon Sequestration Leadership Forum” with Australia, Brazil, Canada, Colombia, Italy, India, Japan, Mexico, Norway, the People’s Republic of China, Russia, the United Kingdom and the US. The Forum aims to stimulate research into carbon sequestration technologies, to “clean up” fossil fuels by capturing CO2 at source and storing it for thousands of years deep underground. This will help reduce greenhouse gas emissions.

Vice president De Palacio said: “We are committed to meeting the Kyoto Protocol targets, through the enhanced use of renewable energy sources, and more efficient use of energy. All these efforts are on track through brand new legislation adopted in the last few years. Carbon sequestration complements these efforts. The agreement signed today offers opportunities for deeper cuts in emissions well beyond the Kyoto 2012 horizon, as a further contribution in the crucial fight against climate change.”



Speaking from Brussels, European Research Commissioner Philippe Busquin stressed that EU research leads in this field: “During the past ten years we have funded research projects worth over €30 million. We will now intensify our efforts by supporting ambitious research projects, totalling some €200 million, to address scientific, technological and other barriers to carbon sequestration. The main goal is to check if carbon sequestration in geological formations is environmentally sound and cost effective. This research could also have an important impact in the field of hydrogen and fuel cell technologies, facilitating the clean production of hydrogen from fossil fuels. We look forward to working with other international partners to develop this promising technology.”

Why carbon sequestration?

The concentration of CO2 in the atmosphere is increasing because of emissions from fossil fuel combustion boosting the natural greenhouse effect, leading to climate change. Power generation, transport, industry and domestic uses are contributing to this increase. The EU committed itself in the Kyoto Protocol to reducing its Green House Gases (GHG) emissions by 8% in the 2008-2012 period compared to 1990 levels.

However, in order to stabilize GHG concentrations in the atmosphere at acceptable levels, much deeper cuts in emissions (by more than 50% globally over the next 50 years) will be necessary. CO2 sequestration could help to meet this goal by capturing CO2 at source and storing it in geological formations.

Other options to limit CO2 emissions, in the energy and transport sectors, include reducing energy consumption, increasing energy efficiency, using low-carbon fuels, and increasing the use of energy sources with low to zero CO2 emissions, such as renewables. In addition, it is necessary to enhance the carbon sink capacity of the biosphere (e.g. forests).

Industrial applications

Coal use for power generation is forecast to increase significantly in the coming decades. Carbon sequestration could be incorporated in power plants that are using coal or natural gas. Capture and storage technologies are best applied in connection with large-scale energy conversion plants such as coal power plants and oil refineries. Carbon sequestration offers the possibility for new industrial applications such as the production of hydrogen, together with electricity, from fossil fuels. The CO2 produced as a by-product could be captured and stored underground.

The European market for carbon sequestration could be large enough for a strong domestic industry sector. But carbon sequestration is not yet economically competitive. It is at the moment more expensive compared to other available options to reduce CO2 emissions in the production of electricity. Nevertheless, with the need for more extensive CO2 emission cuts in the future, carbon sequestration technology could become economically attractive.

How does carbon sequestration work?

For CO2 storage to be an effective way of reducing the risk of climate change, carbon must be stored for thousands of years. Storage must have low environmental impact, acceptable cost and conform to national and international laws. The main options for storing CO2 underground are in depleted oil and gas reservoirs, deep saline reservoirs and unminable coal seams. Already today CO2 is injected underground in many Enhanced Oil Recovery projects.

Underground storage of natural gas, an analogous technique, is widely practised and does not pose safety concerns. However, as CO2 is an asphyxiant and heavier than air, the highest possible safety standards have to be implemented, so as to avoid slow leakage or sudden large-scale release resulting from seismic activity. Underground water sources must also be protected.

| European Commission
Further information:
http://europa.eu.int/comm/research/energy/nn/nn_rt_co1_en.html

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>