Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The EU joins forces with international partners on research to "clean up" fossil fuels

26.06.2003


Today in Washington the European Commission, represented by Loyola de Palacio, Vice President in charge of Energy and Transport, signed an international charter on CO2 capture and storage (CO2/carbon sequestration).

This will create the “Carbon Sequestration Leadership Forum” with Australia, Brazil, Canada, Colombia, Italy, India, Japan, Mexico, Norway, the People’s Republic of China, Russia, the United Kingdom and the US. The Forum aims to stimulate research into carbon sequestration technologies, to “clean up” fossil fuels by capturing CO2 at source and storing it for thousands of years deep underground. This will help reduce greenhouse gas emissions.

Vice president De Palacio said: “We are committed to meeting the Kyoto Protocol targets, through the enhanced use of renewable energy sources, and more efficient use of energy. All these efforts are on track through brand new legislation adopted in the last few years. Carbon sequestration complements these efforts. The agreement signed today offers opportunities for deeper cuts in emissions well beyond the Kyoto 2012 horizon, as a further contribution in the crucial fight against climate change.”



Speaking from Brussels, European Research Commissioner Philippe Busquin stressed that EU research leads in this field: “During the past ten years we have funded research projects worth over €30 million. We will now intensify our efforts by supporting ambitious research projects, totalling some €200 million, to address scientific, technological and other barriers to carbon sequestration. The main goal is to check if carbon sequestration in geological formations is environmentally sound and cost effective. This research could also have an important impact in the field of hydrogen and fuel cell technologies, facilitating the clean production of hydrogen from fossil fuels. We look forward to working with other international partners to develop this promising technology.”

Why carbon sequestration?

The concentration of CO2 in the atmosphere is increasing because of emissions from fossil fuel combustion boosting the natural greenhouse effect, leading to climate change. Power generation, transport, industry and domestic uses are contributing to this increase. The EU committed itself in the Kyoto Protocol to reducing its Green House Gases (GHG) emissions by 8% in the 2008-2012 period compared to 1990 levels.

However, in order to stabilize GHG concentrations in the atmosphere at acceptable levels, much deeper cuts in emissions (by more than 50% globally over the next 50 years) will be necessary. CO2 sequestration could help to meet this goal by capturing CO2 at source and storing it in geological formations.

Other options to limit CO2 emissions, in the energy and transport sectors, include reducing energy consumption, increasing energy efficiency, using low-carbon fuels, and increasing the use of energy sources with low to zero CO2 emissions, such as renewables. In addition, it is necessary to enhance the carbon sink capacity of the biosphere (e.g. forests).

Industrial applications

Coal use for power generation is forecast to increase significantly in the coming decades. Carbon sequestration could be incorporated in power plants that are using coal or natural gas. Capture and storage technologies are best applied in connection with large-scale energy conversion plants such as coal power plants and oil refineries. Carbon sequestration offers the possibility for new industrial applications such as the production of hydrogen, together with electricity, from fossil fuels. The CO2 produced as a by-product could be captured and stored underground.

The European market for carbon sequestration could be large enough for a strong domestic industry sector. But carbon sequestration is not yet economically competitive. It is at the moment more expensive compared to other available options to reduce CO2 emissions in the production of electricity. Nevertheless, with the need for more extensive CO2 emission cuts in the future, carbon sequestration technology could become economically attractive.

How does carbon sequestration work?

For CO2 storage to be an effective way of reducing the risk of climate change, carbon must be stored for thousands of years. Storage must have low environmental impact, acceptable cost and conform to national and international laws. The main options for storing CO2 underground are in depleted oil and gas reservoirs, deep saline reservoirs and unminable coal seams. Already today CO2 is injected underground in many Enhanced Oil Recovery projects.

Underground storage of natural gas, an analogous technique, is widely practised and does not pose safety concerns. However, as CO2 is an asphyxiant and heavier than air, the highest possible safety standards have to be implemented, so as to avoid slow leakage or sudden large-scale release resulting from seismic activity. Underground water sources must also be protected.

| European Commission
Further information:
http://europa.eu.int/comm/research/energy/nn/nn_rt_co1_en.html

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>